期刊文献+

离散混沌系统的线性和非线性反馈同步法及其条件 被引量:2

Synchronization and Its Conditions for Discrete Chaotic Systems by Linear and Nonlinear Feedback
下载PDF
导出
摘要 基于离散系统稳定性理论和Pecora Carroll混沌同步定理 ,研究了多变量离散混沌系统的同步问题 .提出了线性和非线性反馈同步控制方法 ,同步系统反馈控制器由线性和非线性两部分组成 ,响应系统受驱动系统的所有变量驱动 .通过分析误差系统的特征方程和计算响应系统的最大条件Lyapunov指数 ,分别导出了离散混沌系统的同步条件 .将该方法应用于Henon映射系统 ,实现了两Henon混沌系统的同步控制 .讨论了混沌系统的同步性能与控制参数的关系 .基于Matlab软件的数值仿真结果表明了该方法的有效性 . Based on the stability theory of discrete systems and Pecora Carrol chaotic synchronization theorem, the synchronization for a class of discrete chaotic multi variable systems is studied. A new method named linear and nonlinear feedback control is presented. The synchronization controller includes linear and nonlinear feedback, and the response system is driven by all variables of the drive system. Through analyzing the equation of the error system and calculating the maximum Lyapunov exponents of the response system, the synchronization conditions are gained. Then, the method is applied to Henon mapping system, and the synchronization between response and drive Henon systems is realized, and the relations between synchronization performances and control parameters are discussed. The simulation based on Matlab software shows its effectiveness.
出处 《信息与控制》 CSCD 北大核心 2004年第4期413-416,421,共5页 Information and Control
基金 湖南省自然科学基金资助项目 ( 0 1JJY2 110 )
关键词 离散混沌系统 同步控制 条件Lyapunov指数 HENON映射 discrete chaotic system synchronization control condition Lyapunov exponents (CLE) Henon mapping
  • 相关文献

参考文献7

  • 1Pecora L M, Carrol T L. Synchronization in chaotic systems [ J ].Physics Review Letters, 1990, 64(8): 821 -824.
  • 2Pecora L M, Carroll T L. Driving systems with chaotic signals[J]. Physics Review A, 1991, 44(4): 2374-2378.
  • 3Cuomo K M, Oppenheim A V. Circuit implementation of synchronized chaos with applications to communication [ J]. Physics Review Letters, 1993, 71 ( 1 ): 65 - 68.
  • 4Kocarev L, Parlitz U. General approach for chaotic synchronization with application to communication [ J ]. Physics Review Letters,1995, 74(25): 5028-5031.
  • 5De Angeli A, Genesio R, Tesi A. Dead-beat chaos synchronization in discrete-time system [ J ]. IEEE Transactions on Circuits and System- I, 1995,42(1): 54 -56.
  • 6方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展,1996,16(2):137-202. 被引量:117
  • 7任晓林,胡光锐,谭政华.离散混沌系统的非线性反馈控制同步方法[J].上海交通大学学报,2001,35(1):105-107. 被引量:3

二级参考文献31

  • 1方锦清,1991年
  • 2Ning C Z,Phys Rev A,1990年,326页
  • 3Li R
  • 4方锦清,Nucl Phys,1996年
  • 5方锦清,Nucl Pyhs,1996年
  • 6方锦清,1995年
  • 7方锦清,Chin Sci Bull,1995年,40卷,988页
  • 8Ni Wansun,Phys Lett A,1995年,203卷,102页
  • 9Yu Y H,Phys Lett A,1995年,197卷,331页
  • 10Qiu Zhilin,Phys Rev Lett,1995年,74卷,1736页

共引文献118

同被引文献16

  • 1孙黎霞,冯勇,郑雪梅.非匹配不确定混沌系统的有限时间同步[J].电机与控制学报,2006,10(3):324-328. 被引量:2
  • 2郑永爱.Controlling chaos using Takagi-Sugeno fuzzy model and adaptive adjustment[J].Chinese Physics B,2006,15(11):2549-2552. 被引量:3
  • 3王仁明,肖建修,潘俊涛.基于模糊Lyapunov-Krasovskii函数的离散时滞T-S模糊模型的非二次镇定条件[J].三峡大学学报(自然科学版),2006,28(6):531-535. 被引量:2
  • 4Tanaka K, Sugeno M. Stability Analysis and Design of Fuzzy Control Systems[J]. Fuzzy sets and systems, 1992, 45(2):135-156.
  • 5Tanaka K, Ikeda T, Wang Hua O, Fuzzy Regulators and Fuzzy Observers: Relaxed Stability Conditions and LMI -based Designs[J]. IEEE Trans. on Fuzzy Systems, 1998, 6(2):250-265.
  • 6Feng G, Ma J. Quadratic Stabilization of Uncertain Discrete-Time Fuzzy Dynamic Systems[J]. IEEE Trans. on Circuits Systems, 2001, 48:1337-1344.
  • 7M C de Oliveira, Geromel J C, Bernussou J. Extended and Norm Characterizations and Controller Parametrizations for Discrete-time Systems[J]. Int. J. Control. 2002, 75(9) :666-679.
  • 8Guerra T M, Perruquetti W. Non-quadratic Stabilization of Discrete Takagi Sugeno Fuzzy Models[J]. In: Proc. 2001 IEEE Internet, Fuzzy Systems Conf., April, 2001: 1271-1274.
  • 9M C de Oliveira, Bernussou J, Geromel J C. A New Discrete Time Robust Stsbility Condition[J]. Systems and Control Letters 37,199:261-265.
  • 10Tuan H D, Apkarian P, Narikiyo T, et al. Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design[J].IEEE Trans. on Fuzzy Systems, 2001,9(2) :324-332.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部