摘要
从天然氨基酸的25个结构与拓扑变量中经主成分分析得到一种新的氨基酸描述子———VSTV(principalcomponentscoresvectorofstructuralandtopologicalvariables).应用该描述子对以下3个体系,即血管紧张素转化酶抑制剂(2肽)、抗菌18肽和促凝血酶原激酶抑制剂(6~12肽)进行分子结构参数化表达,并在此基础上通过偏最小二乘回归(PLSR)建立定量构效关系(QSAR)模型,取得了优于文献的结果.模型的复相关系数(R2)和交互检验复相关系数(Q2)分别为0.789,0.767;0.996,0.879;0.981,0.480.
Quantitative structure-activity relationships (QSARs) are essential to optimize the structure to give desired biological activities in drug development. In this paper, a new descriptor, principal component scores vector of structural and topological variables (VSTV), was derived from a principal components analysis of a matrix of 25 structural and topological variables of 20 natural amino acids. Using the method of partial least squares regression, the scales were then applied in QSARs of 58 angiotensin-converting enzyme inhibitors, 12 bactericidal peptides and 20 thromboplastin inhibitors. Good results were obtained and the multiple correlation coefficients (R-2) and cross-validated R-2 (Q(2)) of three models were 0.789, 0.767, 0.996, 0.879, 0.981, 0.480, respectively.
出处
《物理化学学报》
SCIE
CAS
CSCD
北大核心
2004年第8期821-825,共5页
Acta Physico-Chimica Sinica
基金
重庆市应用基础基金(2001-155403-6)
霍英东基金(98-05-26)
重庆大学创新基地科技攻关实践项目(2003-03)资助~~
关键词
氨基酸
多肽
拓扑
VSTV
定量构效关系
偏最小二乘回归
amino acids
peptide
topology
principal component scores vector of structural and
topological variables (VSTV)
quantitative structure activity relationship
partial least squares regression