期刊文献+

小波软阈值技术和人工神经网络在洪水预报中的研究 被引量:7

Study of flood forecast based on wavelet soft-threshold technology and ANN
下载PDF
导出
摘要 径流时间序列是时间、频率和流量等的函数。就目前对径流信息的认识来看 ,大体可将其分为确定性因素和随机性因素产生的信息。根据这些信息中隐藏的频率的不同 ,可利用小波变换原理将其分解到若干频率段上 ,即得到若干“近似”项和“细节”项。在运用小波原理对分解出来的各项重构之前 ,在各项上附加不同的阈1 值 ,即可达到对原始数据降噪的目的。本文将降噪后的径流数据用于BP网络的降雨径流模拟 ,网络的收敛性能和学习精度都得到了大大提高。通过实例验证表明 。 The runoff time series is the function of time, frequency and dischange. At the moment, the runoff information can be viewed as the product of determinate and stochastic factors. The information can be decomposed into some approximations and details by the wavelet analysis. Before reconstruction of the wavelet method, some thresholds were added on the every details so as to decrease the noise of the origin runoff data. BP network modeled with denoised data of runoff is presemted in this paper. It shows that the convergence ability and learning precision of the networks can be greatly improved, the generalization of BP networks can also be improved.
出处 《水力发电学报》 EI CSCD 北大核心 2004年第4期5-10,共6页 Journal of Hydroelectric Engineering
关键词 洪水预报 BP网络 小波变换 降噪 flood forecast BP networks wavelet transform denoising
  • 相关文献

参考文献9

  • 1Larrai M & Sechi G. Neural nets for modeling rainfall-runoff transformation [J].Water Resources Management, 1995,(9):299-313.
  • 2Minns A & Hall M. Artifical neural networks as rainfall-runoff models[J]. Hydro. Sci. 1996,41(3):399-417.
  • 3Smith J & Eli R. Neural Network models of rainfall-runoff process [J]. Water Res. Plan & Manag. 1996,121(6):499-508.
  • 4Linda See, Stan openshaw. Applying soft computing approaches to river level forecasting [J]. Hydrological sciences journal sciences hydrologiques, 1999,44(5):763-768.
  • 5Donoho D L. De-Noising by Soft-Thresholding [A]. IEEE Trans IT, 1995,41(3):613-627.
  • 6DeVore RA, Lucier BJ. Fast wavelet techniques for near-optimal image processing [A]. Proc IEEE Military Communication Conference Record [C], IEEE Communication Society,1992,3:1129-1135.
  • 7Mallat S. Theory for multi-resolution aignal decomposition: The wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(7),674-693.
  • 8A. Elshorbagy, S. P. Simonovic & U. S. Panu. Noise reduction in chaotic hydrologic time series:fact and doubt [J]. Journal of hydrology 256(2002),147-165.
  • 9杨荣富,丁晶,刘国东.神经网络模拟降雨径流过程[J].水利学报,1998,29(10):69-73. 被引量:34

二级参考文献6

  • 1杨荣富,水利学报,1998年,8期
  • 2杨荣富,博士学位论文,1997年
  • 3刘国东,1996年全国神经网络理论和应用研究会议论文集,1996年
  • 4胡铁松,现代水科学不确定性研究与进展,1994年
  • 5杨荣富,J Optim Theory Appl,1988年
  • 6丁晶,随机水文学,1988年

共引文献33

同被引文献103

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部