期刊文献+

决策树分类技术研究 被引量:114

The Study on Decision Tree Classification Techniques
下载PDF
导出
摘要 决策树分类是一种重要的数据分类技术。ID3、C4.5和EC4.5是建立决策树的常用算法,但目前国内对一些新的决策树分类算法研究较少。为此,在消化大量文献资料的基础上,研究了CART、SLIQ、SPRINT、PUBLIC等新算法,对各种决策树分类算法的基本思想进行阐述,并分析比较了各种算法的主要特性,为数据分类研究者提供借鉴。 Decision tree is one of the most important data classification techniques. Algorithms ID3, C4.5 and EC4.5 are widely used to construct decision trees, but little work on new decision tree algorithms has been done. Some new decision tree algorithms are studied, including CART, SLIQ, SPRINT and PUBLIC. The basic ideas and main features of these algorithms are discussed in this paper.
出处 《计算机工程》 CAS CSCD 北大核心 2004年第9期94-96,105,共4页 Computer Engineering
基金 江苏省教育厅自然科学基金资助项目(2001SXXTSJB12)
关键词 决策树 CART SLIQ SPRINT PUBLIC 数据分类 Decision tree CART SLIQ SPRINT PUBLIC
  • 相关文献

参考文献6

  • 1Han J, Kambr M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2001:279-333
  • 2Ruggieri S. Efficient C4.5. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(2):438-444
  • 3Breiman L, Friedman JH, Olshen RA, et al. Classification and Regression Trees. Chapman & Hall(Wadsworth, Inc.): New York, 1984
  • 4Mehta M, Agrawal R, Rissancn J. SLIQ: A Fast Scalable Classifier for Data Mining. Research Report, IBM Almaden Research Center, San Jose, California, 1995
  • 5Shafer J, Agrawal R, Mehta M. SPRINT: A Scalable Parallel Classifier for Data Mining. Research Report, IBM Almaden Research Center,San Jose, California, 1996
  • 6Rastogi R, Shim K. PUBLIC: A Decision Tree Classifier that Integrates Building and Pruning. Technical Report, Bell Laboratories, Murray Hill, 1998

同被引文献861

引证文献114

二级引证文献586

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部