期刊文献+

数据挖掘领域中的聚类方法 被引量:11

Clustering Algorithm in Data Mining
下载PDF
导出
摘要 聚类算法是数据挖掘中的核心技术,随着对聚类算法广泛深入的研究,产生了许多不同的适用于数据挖掘的聚类算法;文章从算法的角度论述了如何在数据挖掘中进行聚类分析,并通过基于评价聚类算法好坏的8个标准,对数据挖掘中近几年提出的常用聚类方法作了比较分析,以利于人们更容易、更快速的找到一种适用于特定问题的聚类算法. Clustering algorithm is the key technology in data mining. Along with extensive and in-depth research of it, lots of different methods applicable to the data mining has emerged. The article provides a survey of the application of clustering algorithm in data mining. In order to find out a clustering algorithm for the particular problem more easily and more fast, the article compares and analyzes some commonly used methods advanced in recent years, based on 8 evaluate standards.
作者 王美华
出处 《南华大学学报(理工版)》 2004年第1期58-62,共5页 Journal of Nanhua University(Science & Engineering)
基金 广东省自然科学研究基金资助项目(Z02001).
关键词 数据挖掘 聚类算法 数据库 知识发现 data mining clustering algorithm database
  • 相关文献

参考文献3

二级参考文献13

  • 1[1]ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH: An Efficient Data Clustering Method for very Large Database [ A ] . In: Proc of the ACM SIGMOD Int's Conf on Management of Data[ C]. Montreal Canada:ACM Press, 1996.83-94.
  • 2[2]SANDER F,ESTER M,KRIEGEL HP,XUX.The Algorithm GDBSCAN and its Applications. Data Mining and Knowledge Discovery[J]. KLUWER Academic Publishers, 1998,2: 178-192.
  • 3[3]Ng RT,CALBERSON J.Etficient and Effective Clustering Methods for Spatial Data Mining[A] .In:Porc of the VLDB Conference[C]. Santiago, Chile, 1994. 144-155.
  • 4[5]GEHRKE J, AGRAWAL R, GUNOPULOS D. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applicaitons[J]. ACM SIMOD, 1998,72(2) :94-105.
  • 5[6]CHRISTOPHER J,PHILIP K.Chan,Systems for Knowledge Discovery in Databases IEEE Ttans[J] .On Knowledge and Data Engineering, 1993,5(6) :903-913.
  • 6[7]BETUR V, DASARAEHY. Data Mining and Knowledge Discovery:Theory, Tool, and Technology Ⅱ [ A ]. Orlando, Florida 2000 SPIE-The International Society for Optical Engineering[ C ] ,2000.259-264.
  • 7[8]KRZYSZTOF J Cios, WITOLD Pedrycz, ROMAN W Swingiarski. Data Mining Mehods for Knowledge Discovery [ M ]. London: KLUWER ACDEMIC, 1998.1-20.
  • 8[9]MARTIN Estet, HANS-PETER Kriegel, JORG Sander. Incremental Clustering for Mining in a Data Warehousing Environment[ A ]. Ahsish Gupta, Oded Shmueli, Jennifer Widom. Proceedings of the Twenty-Fourth Internatal Conference on Very Large Databses [C]. NEW York: NY USA, 1998. 323-333.
  • 9[10]ESTER M, KRIEGEL H-P, SANDER J. A Density-Based Algorithm for Discovery Clusters in Large Spatial Databases with Noise [ A]. Proc 2nd Int Conf On Knowledge Discovery and Data Mining[ C]. Portland OR, 1996.226-231.
  • 10J . Han, M. Kamber. Data Mining: Concept and Techniques[M]. San Francisco Morgan KaufmannPublishers, 2001.

共引文献23

同被引文献48

引证文献11

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部