期刊文献+

模糊神经网络在变压器故障诊断中的应用 被引量:19

APPLICATION OF FUZZY NEURAL NETWORK TO TRANSFORMER FAULT DIAGNOSIS
下载PDF
导出
摘要 提出了与神经网络结合的模糊变压器故障诊断新方法 ,克服了一般模糊诊断学习困难的局限 ;通过与模糊判决矩阵的对应关系 ,发现神经网络系统的权值矩阵就是模糊诊断里面的判决矩阵。模糊神经网络、组合神经网络和判决树 3种方法对故障样本的正判率分别为 90 .4 %、75 .4 %、83.3% ,这表明模糊神经网络方法的有效性与可行性 ,它弥补了DGA试验相近故障识别率低的不足 ,克服了组合神经网络无“可塑性”的缺陷 ,避免了判决树对样本选择的强烈依赖 ,使故障诊断准确度大为提高 ; Based on fuzzy neural network, a new method of power transformer fault diagnosis is proposed in this paper. The method combines fuzzy diagnosis with neural network, which solves the difficulty of fuzzy diagnosis in self-studying and finds out the physical meaning of the weight matrix with the help of the relation between the neural network weight matrix and the fuzzy decision matrix. That is to say the neural network weight matrix is the fuzzy decision matrix. The respective accuracies of fuzzy neural network, combinatorial neural network and decision tree is 90.4%, 75.4% or 83.3%. The results have validated that the correctness, the validity and feasibility of the method. The contrast analysis has pointed out the advantages of the proposed method, compared to combinatorial neural network and decision tree. It has offset the insufficiency of DGA test, overcome the limitation of combinatorial neural network which possesses no plasticity, avoided the intensive dependence of decision tree to samples, and increased the accuracy of fault diagnosis greatly. It also explained the necessity of synthetic analysis that DGA test is combined with other electrical tests such as absorptance test, dielectric loss test and so on.
出处 《高电压技术》 EI CAS CSCD 北大核心 2004年第5期14-17,共4页 High Voltage Engineering
关键词 变压器 故障诊断 模糊神经网络 人工神经网络 模糊综合评判理论 power transformer fault diagnosis fuzzy neural network
  • 相关文献

参考文献9

  • 1[1]Mei Denghua.A new fuzzy information optimization processing technique for monitoring the transformer]J].IEE Dielectric ma terial,Measurements and Application,Conference Publication.2000,473:192-195
  • 2[2]Huang Yannchang,Yang Hongtzer,Huang Chinglien.Develo ping a new transformer fault diagnosis system through evelution ary fuzzy logic[J].IEEE Trans on PD,1997,12(2):218-223
  • 3[3]Hu W P,Yin X G,Zhang Z.fault diagnosis of transformer insulation based on compensated fuzzy neural network[J].IEEE an nual report conference on electrical insulation and dielectric phe nomena,2003,273-276
  • 4[4]Xu W,Wang D,Zhou Z,et al.Fault diagnosis of power trans formers:application of fuzzy set theory,expert and artificial neu ral networks[J].IEE Proc Sci Meas Technol,1997,(1):39-44
  • 5杨金才,韩捷,关惠玲,梁川,尹琦岭.用神经网络提取模糊诊断知识的方法[J].机械强度,1999,21(2):92-94. 被引量:4
  • 6刘娜,高文胜,谈克雄.基于组合神经网络模型的电力变压器故障诊断方法[J].电工技术学报,2003,18(2):83-86. 被引量:36
  • 7孙辉,李卫东,孙启忠.判决树方法用于变压器故障诊断的研究[J].中国电机工程学报,2001,21(2):50-55. 被引量:46
  • 8[9]Qian Zheng,Yang Mingzhong,Yang Zhang.Synthetic diagnos tic method for insulation fault of oil-immersed power transformer [C].IEEE Proceedings of the 6th insulation conference on prop erties and applications of dielectric materials.Xi′an,China,2000,6:872-875
  • 9高文胜,钱政,严璋.基于决策树神经网络模型的电力变压器故障诊断方法[J].西安交通大学学报,1999,33(6):11-16. 被引量:13

二级参考文献29

共引文献88

同被引文献192

引证文献19

二级引证文献169

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部