期刊文献+

矿物油污染土壤中芳烃组分的生物降解与微生物生长动态 被引量:21

Biodegradation of Aromatic Hydrocarbons and Dynamics of Microbe Growth in Soils Contaminated with Mineral Oil
下载PDF
导出
摘要 以石油污染土壤中分离的细菌和真菌为供试微生物 ,研究不同微生物组合对矿物油芳烃组分降解及降解率与微生物生长间的关系 .将不同组合的微生物接种到加有柴油浓度为 10 0 0mg/L的液体培养基中 ,2 5~ 30℃经摇床连续培养 10 0d .于 0~6 0h内连续取样 ,进行微生物生长动态检测 ;于 5~ 10 0d定期取样 ,研究微生物生长状况与矿物油降解率动态变化 .同时 ,以草甸棕壤 (0~ 2 0cm)制备的土壤悬浮液为土壤微生物对照 ,以灭菌培养基为非生物降解对照 .结果表明 ,试验前期 (约 2 0d)外源菌的降解效果优于土壤微生物 ,试验中、后期 ,土壤微生物降解优势增大且保持持续 .试验结束时 ,土壤微生物处理的液体培养基中芳烃降解率最高达 79 2 4 % ,显著高于其它 3组处理 . Some bacteria and fungi selected from brown soil contaminated with petroleum were taken as test microbes. Degradation of mineral oil, by different combinations of microbes and the correlation between the degradation rate and microbial growth were studied. The bacteria and fungi were inoculated to a liquid substrate spiked with 1000 milligrams diesel-oil per liter. The temperature of rocking-bed was controlled at 25 to 30 centigrade and the experiment continued for 100 days. From 0 to 60 hours it was sampled continuously to monitor the dynamic of microbial growth, and sampled termly from 5 to 100 days to study the growth of microbes and the dynamic of degradation rate. At the same time, the suspension of 0 to 20 centimeters of topsoil of the meadow umber was taken as soil microbial control, and the culture without microbes as blank control. Results showed that degradation effect of the introduced microbes were superior to that of the indigenous microbes in short term (about 20 days), while the advantage of indigenous microbes got stronger and stronger, and the predominance maintained until the experiment was stopped. At the end of the experiment the degradation rate in the treatment of indigenous microbes reached 79.24%, which was above the results of other 3 treatments, and the difference was significant.
出处 《环境科学》 EI CAS CSCD 北大核心 2004年第3期115-119,共5页 Environmental Science
基金 国家自然科学基金项目 ( 2 0 2 770 41 2 0 0 770 2 9) 国家杰出青年基金项目 ( 2 0 2 2 5 72 2 )
关键词 土壤 芳烃 矿物油 细菌 真菌 降解率 mineral oil aromatic hydrocarbon microbial degradation degradation rate soil
  • 相关文献

参考文献12

  • 1Volker Riis, et al. Analytical characterization of the persistent residues after microbial degradation of mineral oils[J]. Fresenius J. Anal. Chem.,1996,356: 378-384.
  • 2Jorgensen K S, Puustinen J, Suortti A M. Bioremediation of petroleum hydrocarbon- contaminated soil by composting in biopiles[M]. Environmental Pollution, 2000,107(2): 245-254.
  • 3Facundo J, Marquez-rocha, et al. Biodegradation of diesel oil in soil by a microbial consortium[J]. Water, Air, and Soils Pollution, 2001, 128: 313-320.
  • 4Wan Namkoong, et al. Bioremediation of diesel-contaminated soil with composting[J]. Environmental Pollution, 2002, 119(1): 23-31.
  • 5Fredrickson J K. In situ and on situ bioremediation[J]. Environmental Science and Technology, 1993, 27(9): 1711-1716.
  • 6William C, et al. Bioremediation[M]. Alexandria: Water Environment Federation, 1995.7-10.
  • 7Spain JC, et al. Effects of adaptation on biodegradation rates in sediment/water cores from estuarine and freshwater environments[J]. Applied Environmental Microbiology, 1980, 40: 726-734.
  • 8Heitkamp M A, Cerniglia C E. Mineralization of polycyclic aromatic hydrocarbon by a bacterium isolated from sediment below an oil field[J]. Applied and Environmental Microbiology, 1988, 54: 1612-1614.
  • 9宋玉芳,孙铁珩,许华夏.表面活性剂TW-80对土壤中多环芳烃生物降解的影响[J].应用生态学报,1999,10(2):230-232. 被引量:59
  • 10陈玉成.土壤污染的生物修复[J].环境科学动态,1999(2):7-11. 被引量:50

二级参考文献21

  • 1宋玉芳,区自清,孙铁珩,A.Yediler,G.Lorinci,A.Kettrup.土壤、植物样品中多环芳烃(PAHs)分析方法研究[J].应用生态学报,1995,6(1):92-96. 被引量:129
  • 2中国科学院微生物研究所.常见与常用真菌[M].北京:科学出版社,1978..
  • 3[1]Yokoi H, Ohkawara T et al. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J.Ferment. Bioeng. , 1995, 80(6): 571 ~574.
  • 4[2]Tanisho S, Ishiwata Y. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes. Int.J. Hydrogen Energy, 1994, 19(10): 807~812.
  • 5[4]Mori K et al. Effect of heavy metals on the growth of a methanogen in pure and co-culture with a sulfate-reducing bacterium. J. Biosci. Bioeng. ,2000, 90(3): 260 ~ 265.
  • 6[5]赵一章.产甲烷细菌及研究方法.成都:成都科技大学出版社,1997
  • 7[6]Kayano H, Matsunaga T et al. Hydrogen evolution by co-immobilized Chlorella vulgaris and Clostridium butyricum cells. Biochimica et Biophysica Acta, 1981,638: 80 ~ 85.
  • 8[7]Miyake J, Mao X Y, Kawamura S. Photoproduction of hydrogen from glucose by a co-cuhure of a photosynthetic bacterium and Clostridium butyricum. J. Ferment. Technol. ,1990, 62(6): 531~535.
  • 9[8]Kawaguchi H, Hashimoto K, Hirata K, Miyamoto K. H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobucillus amylovorus. J.Biosci. Bioeng. , 2001, 91(3) :277 ~282.
  • 10[9]Iannotti E L,Kafkewita D et al. Glucose fermentation products of Rumiuoccus albus grown in continuous culture with Vibrio succinogenes: changes caused by Interspecies transfer of H2. J. Bacteriol., 1973, 114(3): 1231~1240.

共引文献132

同被引文献282

引证文献21

二级引证文献314

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部