期刊文献+

基于原子力显微镜和分子动力学的纳米压痕技术研究 被引量:16

STUDY ON THE NANOINDENTATION VIA ATOMIC FORCE MICROSCOPE AND MOLECULAR DYNAMICS SIMULATION
下载PDF
导出
摘要 利用原子力显微镜对真空蒸发镀膜技术制得的单晶铜薄膜试件进行了纳米压痕试验。通过进行各种压痕深度下的试验,获得了压痕深度对试件力学性能的影响关系。试验得到的试件弹性模量为67.0 GPa±6.9 GPa。试件的硬度值随着压痕深度的减小而不断增大,表现出强烈的尺寸效应。在原子力显微镜试验的同时,使用分子动力学仿真方法对单晶铜薄膜的纳米压痕过程进行了研究。仿真结果表明单晶铜薄膜的纳米压痕的力学机理不是位错在晶体中运动产生的塑性变形,而是非晶态产生的变形,从而解释了尺寸效应产生的原因。 Nanoindentation tests performed in an atomic force microscope have been utilized to directly measure the me- chanical properties of single crystal copper thin films fabricated by the vacuum vapor deposition technique. Nanoindentation tests are conduted at various indentation depths to study the effect of indentation depths on the mechanical properties of thin films. The elastic modulus of the single crystal copper film at various indentation depths is determined as 67.0 GPa±6.9 GPa on average which is in reasonable agreement with the results reported in literature. The indentation hardness constantly in- creases with decreasing indentation depth,indicating a strong size effects. In addition to the experimental work, molecular dynamics simulations of nanoindentation process have been conducted to elucidate the mechanics and mechanisms of na- noindentation of thin films. MD simulations results show that due to size effect the plastic deformation via amorphous trans- formation is more favorable than via the generation and propa- gation of dislocations in nanoindenation of single crystal cop- per thin films. Simulations results also elucidate the reason of size effects from the atomistic point of view.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2004年第6期39-44,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(50175017) 哈尔滨工业大学跨学科交叉性研究基金(HIT.MD.2000.9)
关键词 纳米压痕 薄膜 原子力显微镜 分子动力学 力学性能 Nanoindentation Thin film Atomic force microscope Molecular dynamics Mechanical properties
  • 相关文献

参考文献14

  • 1Li J C M. Impression creep and other localized tests. Ma-terials Science and Engineering A, 2002, 322(1, 2):23~42
  • 2Chudoba T, Richter F. Investigation of creep behaviour under load during indentation experiments and its influ-ence on hardness and modulus results. Surface and Coat-ings Technology, 2001, 148(2, 3):191~198
  • 3Li X, Bhushan B. Micro/nanomechanical characterization of ceramic films for microdevices. Thin Solid Films, 1999, 340(1, 2):210~217
  • 4Digital Instruments Inc. Support note no.225, Rev F, Santa Barbara, CA 1998
  • 5Knapp J A, Follstaedt D M, Myers S M, et al. Fi-nite-element modeling nanoindentation for evaluating mechanical properties of MEMS materials. Surface and Coatings Technology, 1998, 103~104:268~275
  • 6Pethica J B, Huntchings R, Oliver W C. Hardness meas-urements at penetration depths as small as 20 nm. Philo-sophical Magazine A, 1983, 48(4):593~606
  • 7Doerner M F, Nix W D. A method for interpreting the data from depth-sensing indentation instruments. Journal of Material Research, 1986, 1(4):601~609
  • 8Briscoe B J, Sebastian K S, Sinha S K. Application of the compliance method to microhardness measurements of organic polymers. Philosophical Magazine, 1996, A74: 1 159~1 169
  • 9Oliver W C, Pharr G M. An improved technique for de-termining hardness and elastic modulus using load and dis-placement sensing indentation experiments. Journal of Material Research, 1992, 7(6):1 564~1 580
  • 10Rafii-Tabar H. Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations. Physics Reports, 2000, 325(6):239~310

同被引文献172

引证文献16

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部