期刊文献+

一种强健的守恒型间断跟踪法在一维Euler方程组上的实现 被引量:6

A Robust Front-tracking Method Based on Conservation for Euler System in One Space Dimension
下载PDF
导出
摘要  文[8,9]研究设计了一种守恒型的间断跟踪法,其主要特点是以解的守恒性作为跟踪的机制而不是像传统的间断跟踪法利用Rankine Hugoniot条件,将该跟踪法对一维Euler方程组进行实现.对一维单个守恒律凸流的实现见文[7].由于Euler方程组有3类特征线,信息沿每类特征线传播并相互穿透.如果仍然象单个守恒律那样间断两侧的数值解的计算只用到来自间断同侧的信息,则间断一侧的信息就不能传到间断的另一侧,而会堆积在间断附近.设计了一种几乎是二阶的按特征方式分离信息的方法,将堆积在间断附近的信息分离.而且按此思想可做成高阶方法.该方法中不仅用到了精确Riemann分解,还用到了Roe[12]的近似Riemann分解及各种插值和重构技巧.数值实验表明这样的处理是有效的. A conservative front-tracking method^([8,9]) has been developed . The main feature of the method is that it uses the conservation property of the solution rather than the Hugoniot conditions to track discontinuities. The goal of this paper is to realize the method for the Euler system in an almost second order fashion. Euler system has three different kinds of characteristics, and waves propagate along the characteristics. Thus, to do the front-tracking, in the vicinity of the tracked discontinuities, it is necessary to spearate the waves in other characteristic fields from the tracked discontinuities and then distribute them to the solution on the two sides. An almost second order accurate wave separation procedure be designed, which can separate waves and then distribute them. Numerical examples show the effciency of the method.
作者 刘妍 茅德康
机构地区 上海大学数学系
出处 《计算物理》 CSCD 北大核心 2004年第3期312-318,共7页 Chinese Journal of Computational Physics
关键词 网格平均 间断跟踪法 RIEMANN问题 间断位置 欧拉方程组 cell-average front tracking method Riemann problem discontinuity position
  • 相关文献

参考文献12

  • 1Colella P, Woodward P R. The numerical simulation of two-dimensional fluid flow with strong shocks [J]. J Comput Phys, 1984,.54:115 - 173.
  • 2Glimm J, Grove J, Li Xiao-lin, Shyue Keh-ming, Zeng Yan-ni, Zhang Qiang. Three dimensional front tracking [J] .SIAM J Sci Comput, 1998,19(3) :703 - 727.
  • 3Glimm J, McBryan O, Plohr B, Yaniv S.Front tracking for gas dynamics [J] .J Comput Phys, 1986,62:83 - 110.
  • 4Henshaw W D. A scheme for numerical solution of hyperbolic system of conservation laws [J]. J Comput Phys, 1987,68:25 -47.
  • 5Leveque R J, Shue K M. One dimensional fornt tracking based on high resolution wave progation methods [J] .SIAM J Sci Comput,1995,16: 348 - 377.
  • 6Leveque R J. Numerical Methods for Conservation Laws [J]. Birkhauser-Verlag, Basel, Boston, Berlin, 1990,124- 126.
  • 7刘 妍,茅德康.一种守恒型间断跟踪法在一维单守恒律方程上的程序实现[J].应用数学与计算数学学报,2001,15(1):10-18. 被引量:4
  • 8Mao D.Towards front tracking based on conservation in two space dimension [J]. SIAM J Sci Comput,2000,22(1):113 - 151.
  • 9Mao D. A shock tracking technique based on conservation in one space dimmension [J] .SIAM J Numer Anal,1995,32:1677 - 1703.
  • 10Shu Chi-wang. Efficient implementation of essentially non-oscillatory shock-capturing schemes, Ⅱ [J] .J Comput Phys,1989,83:32 -78.

二级参考文献3

  • 1Mao D,SIAM J SCI Comput,2000年,22卷,1期,113页
  • 2Mao D,SIAM J Numer Anal,1995年,32卷,1677页
  • 3Shu Chiwang,J Comput Phys,1989年,83卷,32页

共引文献3

同被引文献29

  • 1刘妍,茅德康.守恒型间断跟踪法中对于间断及其相互作用的处理[J].计算物理,2005,22(6):520-526. 被引量:2
  • 2刘妍,茅德康.一种守恒型间断跟踪法中对任意多个间断的移动和相互作用的处理[J].应用数学和力学,2006,27(8):954-962. 被引量:1
  • 3D. Mao. A shock tracking technique based on conservation in one space dimmension. SIAMJ. Numer. Anal, 1995, 32: 1677-1703.
  • 4D. Mao. Towards front tracking based on conservation in two space dimension. SIAM J. SCI.Comput, 2000, 22(1): 113-151.
  • 5R. J. LeVeque. Finite Volume Methods for Hyperbolic Problem. Cambridge University Press,United Kingdom, 2002.
  • 6Tung Chang, Ling Hsiao. The Riemann Problem and Interaction of Waves in Gas Dynamics.John Wiley and Sons, Inc. New York, USA, 1989.
  • 7B. K. SWARTZ AND B.WENDROFF. A front tracking code based on Godunov's method. Appl.Namer. Math, 1986, 2: 385-397.
  • 8J. GLIMM, J. GROVE, Xiao Lin Li, Keh-ming Shyue, Yanni Zeng, Qiang Zhang. Three dimensional front tracking. SIAM J. SCI. Comput, 1998, 19(3): 703-727.
  • 9J. GLIMM, O. MCBRYAN, B. PLOHR, S. YANIV. Front tracking for gas dynamics. J. Comput.Phys, 1986, 62: 83-110.
  • 10W. D. HENSHAW. A scheme for numerical solution of hyperbolic system of conservation laws.J. Comput. Phys, 1987, 68: 25-47.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部