期刊文献+

半焦氧化过程中反应活化能的变迁

The Transition of the Activation Energy of Semi-coke During Its Oxidation Process
下载PDF
导出
摘要 使用热天平考察了 5种半焦的本征氧化反应活性。这 5种半焦是由大同煤、神木煤、蔚县煤、湔江煤和台湾石油焦在 90 0℃下热解 7min制得的 ,使用分布活化能模型(DAEM)描述了半焦在氧化过程中的活化能变迁。大同煤半焦初期活化能最小 ,随着碳损失率的增加 ,活化能增加 (反应初期增加较快 ) ,反应后期达到峰值后下降。湔江煤半焦活化能则是在反应初期活化能很高 (达 2 5 0kJ/mol) ,其初始下降较快 ,在碳损失为 0 .2后其下降趋势变缓。而对于其它三种半焦 ,均在反应初期与反应后期其活化能分别经历两个峰 ,在此之间变化比较平缓。各种半焦活化能的变迁规律不同 ,反映了其内部性质的不同。与煤焦相比 ,石油焦半焦的内部结构比较均一。 The activation energy of five kinds of semi-coke during its eigen oxidation in air was investigated by using a thermogravimetric balance. These semi-cokes were prepared from Datong coal, Shenmu coal, Yuxian coal, Jianjiang coal and Taiwan petroleum coke by pyrolysis for 7 minutes at a temperature of 900 ℃. A distributed activation energy model (DAEM) was employed to describe the transition of activation energy of semi-cokes during an oxidation process. Initially, the activation energy of Datong coal semi-coke assumes a minimum value. With an increase in carbon loss rate the activation energy will increase (the increase at initial period of reaction is relatively rapid), and decrease on reaching a peak value at a later period of reaction. The activation energy of Jianjiang coal semi-coke is very high at the initial period of reaction (as high as 250 kJ/mol). It decreases rather rapidly at first, but tends to decrease slowly when the carbon loss is assessed at 20%. As for the semi-coke of the other three kinds of coal their activation energy will experience respectively two peaks at the initial and later period of reaction with a relatively mild change between the two peaks. The different transition mechanisms of the activation energy specific to various kinds of semi-coke reflect their different internal qualities. As compared with coal cokes, the semi-coke of petroleum coke exhibits a relatively uniform internal structure.
出处 《热能动力工程》 CAS CSCD 北大核心 2004年第4期398-401,共4页 Journal of Engineering for Thermal Energy and Power
基金 国家重点基础研究规划项目 (G19990 2 2 2 0 4) 国家十五科技攻关项目 ( 2 0 0 1BA40 1A0 3 )
关键词 半焦 氧化 活化能 分布活化能模型 semi-coke, oxidation, activation energy, distributed activation energy model.
  • 相关文献

参考文献17

  • 1[1]TAKARADA T, TAMMAI Y, TOMITTA A. Reactivities of 34 coals under steam gasification[J]. Fuel, 1985, 64(10):1438-1442.
  • 2[2]MIURA K,HASHIMOTO K, SILVESTON P L. Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity[J].Fuel,1989,68(11):1461-1475.
  • 3[3]RADOVIC L R, WALKER Jr P L, JENKINS R G. Importance of carbon active sites in the gasification of coal chars[J]. Fuel, 1983, 62(7):849-856.
  • 4[4]SUUBERG E M. Thermally induced changes in reactivity of carbons[M]. Fundamental Issues in Control of Carbon Gasification Reactivity, Edited by J. Lahaye and P. Ehrburger, Dordrecht: Kluwer Academic, 1991, 269-305.
  • 5[5]SAHU R, LEVNDIS Y A, FLAGAN R C,et al. Physical properties and oxidation rates of chars from three bituminous coals[J]. Fuel, 1988, 67(2):275-283.
  • 6[6]CAI H Y,GUELL A J, CHATZAKIS I N, et al. Combustion reactivity and morphological change in coal chars: effect of pyrolysis temperature, heating rate and pressure[J]. Fuel, 1996,75(1):15-24.
  • 7[8]DAVIS K A, HURT R H, YANG N Y, et al. Evolution of char chemistry, crystallinity and ultrafine structure during pulverized-coal combustion[J]. Combustion and Flame, 1995,100(1):31-40.
  • 8[9]HURT R H, DAVIS K A, YANG N Y C,et al. Residual carbon from pulverized-coal-fired boilers 2. Morphology and physicochemical properties [J]. Fuel, 1995,74(9):1297-1306.
  • 9[10]KASAOKA S, SAKATA Y, SHIMADA M. Effect of coal carboniza-tion conditions on rate of steam gasification of char[J]. Fuel, 1987, 66(5):697-701.
  • 10[11]ROUZAUD J N, DUVAL B,LEROY J. Coke microtexture: One key for coke reactivity[M]. Fundamental Issues in Control of Carbon Gasification Reactivity, Edited by J. Lahaye and P. Ehrburger, Dordrecht: Kluwer Academic,1991. 257-265.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部