期刊文献+

同时实现地质雷达数据地形校正和偏移成像的方法 被引量:9

Terrain correction and migration of GPR profile fulfilled simultaneously using reverse-time migration
下载PDF
导出
摘要 起伏地形使地质雷达图像变得复杂、地层界面的反射同相轴畸变、绕射同相轴严重偏离双曲线形状。提出了用麦克斯韦方程逆时偏移的方法同时实现地形校正和偏移成像以消除地形的影响。该方法将等偏移距逆时记录作为在接收点位置处的电流源,用时间域有限差分法求介质中的波场,输入波场退为零时刻时的空间电场分布即为地形校正和偏移成像结果。由于地形校正也是基于波动方程实现的,因此它比基于射线理论的常规静校正方法精确。通过比较该方法与常规静校正加逆时偏移之效果可知,该方法能更准确地对起伏地形下方的金属管线等绕射体成像。 Ground-penetrating radar images collected on an undulating terrain become complicated because of the terrain. Reflections on a common-offset radar profile from interfaces are far from the true shapes of the reflectors; and diffractions are not hyperbolas anymore. This paper proposes to use reverse-time migration method for compensating the effect of the terrain and for completing migration at the same time. The reversal of common-offset radar data received on a terrain are served as incident currents at corresponding receivers' positions, the electric field in the whole space is calculated by Maxwell's equations solved by the finite-difference time-domain method. The spatial distribution of the electric field at zero time is the terrain corrected and migrated result. The terrain correction is done by the wave equation too. A synthetic radar profile is processed by using the conventional static correction method based on the ray theory plus migration and by using the reverse-time method, respectively. The numerical example demonstrates that the reverse-time migration method directly applied to the radar data can image a metallic pipe more accurately than the conventional static correction method plus migration.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2004年第3期459-463,共5页 Journal of Jilin University:Earth Science Edition
基金 国家自然科学基金资助项目(40104004) 教育部留学回国人员科研启动基金资助
关键词 地形校正 地质雷达 逆时偏移 terrain correction ground-penetrating radar reverse-time migration
  • 相关文献

参考文献12

  • 1[1]McMechan G A. Migration by extrapolation of timedependent boundary values[J]. Geophysical Prospecting, 1983, 31: 412-420.
  • 2[2]Mufti I R, Pita J A, Huntley R W. Finite-difference depth migration of exploration-scale 3-D seismic data [J]. Geophysics, 1996, 61: 776- 794.
  • 3[3]Zhu J, Lines L R. Comparison of Kirchhoff and reverse-time migration methods with applications to prestack depth imaging of complex structures[J]. Geophysics, 1998, 63: I 166- 1 176.
  • 4[4]Fisher E, McMechan G A, Annan A P, et al. Examples of reverse-time migration of single-channel,ground-penctrating radar profiles [J]. Geophysics,1992, 57: 577-586.
  • 5[5]Zhou H, Sato M. Subsurface cavity imaging by crosshole borehole radar measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(2):335 -341.
  • 6[6]Yee K S. Numerical solution of initial boundary value problems involving Maxwell' s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14: 302-307.
  • 7[7]Mur G. Absorbing boundary conditions for the finitedifference approximation of the time-domain electromagnetic-field equation[J]. Mathematics of Computation, 1986, 47: 437-459.
  • 8[8]Liao Z P, Wong H L, Yang B P, et al. A transmitting boundary for transient wave analysis[J]. Science Sinica, Series A, 1984, 27:1 063-1 076.
  • 9[9]Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114:185 - 200.
  • 10[10]Chew W C, Liu Q H. Perfectly matched layer for elastodynamics: A new absorbing boundary condition [J]. Journal of Computational Acoustics, 1996, 4:341 - 359.

同被引文献114

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部