期刊文献+

四参数全范围da/dN曲线测定方法研究 被引量:4

4-Parameter Full Range Crack Growth Rate Curve
下载PDF
导出
摘要 机械结构设计的损伤容限分析,需要使用材料疲劳裂纹扩展速率曲线性能。在总结传统疲劳裂纹扩展曲线的基础上,本文讨论了四参数全范围da/dN曲线公式;基于断裂力学原理,分别给出了此公式中材料裂纹扩展门槛值ΔKth,断裂韧性K1C和张开函数f的测定方法;利用多元线性回归法对试验数据进行了曲线拟合,得到了四参数全范围da/dN曲线公式的参数估计式;将此公式运用于不同应力比下的裂纹扩展速率试验数据拟合,通过试验数据的拟合结果可以看出:四参数全范围da/dN曲线公式,能够充分有效合理地表征全范围裂纹扩展速率的物理特性和宏观数据规律,且参数估计简便,拟合精度高;从而验证了四参数全范围da/dN曲线公式的有效性和合理性,并将得到广泛应用。 Damage tolerance analyses of mechanical structure design require some information on fatigue crack growth rate curve of the material. In order to address this need, a four-parameter curve, which describes the full range of fatigue crack growth rate, was adopted to represent the test results of fatigue crack growth rate based on the conventional method. The approaches of determining the material′s fatigue crack growth threshold value ΔK_(th), the fracture toughness K_C and the opening function f in this four-parameter curve were presented respectively by means of fracture mechanics principles. The parameters of the four-parameter full range da/dN Forman curve formula were estimated by using the multivariable linear regression and the parameter estimation formulae were derived. The four-parameter da/dN curves obtained were then used to fit the fatigue crack growth rate data under different stress ratios. From the fitting results of test data, it is evident that the fitting curves can effectively, adequately and logically depict the physical characteristics and the phenomenological quantitative laws of the full range of crack growth rate. The parameters in the models can be estimated expediently and easily, and the calculated curves are consistent with the experimental data. This demonstrates the validity and rationality of the four-parameter da/dN curve. It is concluded that the methods presented in this paper will have a wide application.
出处 《实验力学》 CSCD 北大核心 2004年第2期222-228,共7页 Journal of Experimental Mechanics
基金 国家自然科学基金 航空科学基金资助项目(批准号:50005003和01A51011)
  • 相关文献

参考文献11

  • 1Paris P C and Erdogan F. A Critical Analysis of Crack Propagation Laws [J]. Journal of Basic Engineering ASME (Series D), 1963, 85:528-534
  • 2Forman R G, Kearney V E, Engle R M. Numerical Analysis of Crack Propagation in Cyclic Loaded Structres [J]. Journal of Basic Engineering, Trans. ASME (Series D), 1967, 89:459-464
  • 3Walker E K. The e ffect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum [D]. In:Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 462, ASTM, Philadelphia, PA:1-14
  • 4Forman R G, Mettu S R. Behavior of Surface and Corner Cracks Subjected to Tensile and Bending Loads in Ti-6Al-4V Alloy [J]. Fracture Mechanics:Twenty-second Symposium, 1992, ASTM STP 1131, 1:519-546
  • 5王永廉 吴永瑞.一个适用性广泛的疲劳裂纹扩展速率表达式 [J].航空学报,1987,8(4):191-196.
  • 6金平,陈跃良,段成美.直升机动部件定寿技术研究[J].航空学报,2002,23(3):255-258. 被引量:10
  • 7Tanaka K, Nakai Y, Yamashita M. Fatigue Growth Threshold of Small Cracks [J]. International Journal of Fracture, 1981, 17(5):519-533.
  • 8Schmidt R A, Paris P C. Threshold for Fatigue Crack Propagation and Effects of Load Ratio and Frequency [D]. Progress in Flaw Growth and Fracture Toughness Testing, ASTM, 1973;STP 513:79-94.
  • 9Newman J C. A Crack Opening Stress Equation for Fatigue Crack Growth [J]. International Journal of Fracture, 1984, 24(3):131-135
  • 10Forman G A. Material Thickness Effect on Critical Stress Intensity [M]. Monograph #106, TRW Space & Technology Group, 1983

二级参考文献12

  • 1高镇同.疲劳应用统计学[M].北京:国防工业出版社,1986.365-381.
  • 2《机械工程材料性能数据手册》编委会.机械工程材料性能数据手册[M].北京:机械工业出版社,1994..
  • 3史斯佃.超黄蜂直升机尾桨叶根部接头连接区有限元分析.中国直升机设计研究所技术报告会WJYS-JJJS-07[M].景德镇:中国直升机设计研究所,2000..
  • 4顾文标.超黄蜂直升机尾桨叶根部接头损伤容限谱.中国直升机设计研究所技术报告会WJYS-JJJS-05[M].景德镇:中国直升机设计研究所,2000..
  • 5北京航空材料研究所.航空材料断裂性能手册[M].北京:航空工业出版社,1983.103-105.
  • 6航空航天部科学技术研究所.美国空军损伤容限设计手册[M].北京:航空工业出版社,1988.201-205.
  • 7邓增杰,工程材料的断裂与疲劳,1995年
  • 8《机械工程材料性能数据手册》编委会,机械工程材料性能数据手册,1994年
  • 9崔振源,断裂韧性测试原理和方法,1981年
  • 10Xiong Junjiang,Chin J Aeronaut,1999年,12卷,3期,148页

共引文献19

同被引文献29

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部