期刊文献+

双向Elman神经网络在卫星电池阵功率预测中的应用研究 被引量:1

Application of Bi-directional Elman Neural Networks in Satellite Battery Array Power’s Prediction
下载PDF
导出
摘要 针对神经网络预测电池阵功率存在的模型阶数难以确定及预测精度低下的问题 ,提出一种基于改进的Elman神经网络的双向预测模型。该模型利用关联层动态神经元的反馈连接 ,将未来预测网络和过去预测网络的信息进行融合 ,使网络对时间序列特征信息的记忆得到加强 ,从而提高预测精度。用该文提出的双向预测模型对电池阵功率进行预测 ,输入层仅需一个节点 ,不需事先对模型进行定阶。仿真预测表明 ,预测精度比单向模型明显提高 ,且网络具有较好的泛化能力。 In order to resolve the problem of determination of the number of model order and predictive accuracy being low in predicting battery array power by ANN, the paper presents a bi directional predictive model based on improved Elman. Information of future and past prediction system is fused and memory of network for time series feature’s information is strengthened by this model which depends on the feedback of connective layer. The method effectively improves the predictive accuracy. The model presented by the paper needs not to determine the number of model order in predicting battery array power. The simulation results indicate that its predictive accuracy is greatly improved by comparison with unidirectional model, and that the model has a better generalization ability.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2004年第4期404-408,共5页 Journal of Nanjing University of Science and Technology
基金 国家高技术研究发展计划 (86 3- 2 0 0 2AA72 10 6 3)
关键词 ELMAN神经网络 双向预测模型 卫星电池阵功率 预测 Elman neural network bi directional prediction model satellite battery array power prediction
  • 相关文献

参考文献4

  • 1[1]Cholewo T,Zurada J M.Sequential network construction for time series prediction[A].Proceedings of the IEEE International Joint Conference on Neural Networks[C].Houston:IEEE Computer Association,1997.2 034~2 039.
  • 2温广瑞,屈梁生,张西宁.基于递归神经网络的多步预报方法[J].西安交通大学学报,2002,36(7):722-725. 被引量:5
  • 3[3]Aussem A.Dynamical recurrent neural networks towards prediction and modeling of dynamical systems[J].Neurocomputing,1999(28):207~232.
  • 4[5]Wakuya H,Zurada J M.Bi-directional computing architecture for time series prediction [J].Neural Networks,2001,1(14):130 7~132 1.

二级参考文献1

共引文献4

同被引文献10

  • 1程向红,万德钧.分布式系统中捷联惯性系统动基座对准研究[J].中国惯性技术学报,2004,12(6):8-12. 被引量:11
  • 2GUDong-qing,QINYong-yuan,PENGRong,LIXin.RAPID TRANSFER ALIGNMENT USING FEDERATED KALMAN FILTER[J].Transactions of Nanjing University of Aeronautics and Astronautics,2005,22(2):139-143. 被引量:10
  • 3Shortelle K J,Graham W R,Rabourn C.F-16 flight tests of a rapid transfer alignment procedure[A].IEEE Position Location and Navigation Symposium[C].Piscataway,NJ,USA:IEEE,1998:379-386.
  • 4Lyou J,Lim Y C.Transfer alignment error compensator design based on robust state estimation[A].Transactions of the Japan Society for Aeronautical and Space Sciences[C].Tokyo,Japan:Society for Aeronautical and Space Sciences,2005:143-151.
  • 5Yan J G,Yuan D L,Wang X M,et al.A study of information fusion based on federated Kalman filtering[A].Proceedings of the World Congress on Intelligent Control and Automation[C].Piscataway,NJ,USA:IEEE,2006:1474-1477.
  • 6Jamshaid A,Fang J C.SINS/ANS/GPS integration using federated Kalman filter based on optimized information-sharing coefficients[A].AIAA Guidance,Navigation,and Control Conf[C].Reston,VA,USA:AIAA,2005:6028-6040.
  • 7He H T,Tian X.An improved Elman network and its application in flatness prediction modeling[A].Second International Conference on Innovative Computing,Information and Control,ICICIC 2007[C].Piscataway,NJ,USA:IEEE Computer Society,2008:44-48.
  • 8Cheng Y C,Qi W M,Cai W Y.Dynamic properties of Elman and modified Elman neural network[A].Proceedings of 2002 International Conference on Machine Learning and Cybernetics[C].Piscataway,NJ,USA:IEEE,2002:637-640.
  • 9Mohamad F A,Haza N A H,Siti M H S.Augmentation of Elman recurrent network learning with particle swarm optimization[A].Second Asia International Conference on Modeling and Simulation[C].Piscataway,NJ,USA:IEEE Computer Society,2008:625-630.
  • 10单茂华,周百令,黄丽斌.联合H_∞滤波算法及其在组合导航系统中的应用研究[J].数据采集与处理,2003,18(4):418-422. 被引量:9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部