摘要
针对神经网络预测电池阵功率存在的模型阶数难以确定及预测精度低下的问题 ,提出一种基于改进的Elman神经网络的双向预测模型。该模型利用关联层动态神经元的反馈连接 ,将未来预测网络和过去预测网络的信息进行融合 ,使网络对时间序列特征信息的记忆得到加强 ,从而提高预测精度。用该文提出的双向预测模型对电池阵功率进行预测 ,输入层仅需一个节点 ,不需事先对模型进行定阶。仿真预测表明 ,预测精度比单向模型明显提高 ,且网络具有较好的泛化能力。
In order to resolve the problem of determination of the number of model order and predictive accuracy being low in predicting battery array power by ANN, the paper presents a bi directional predictive model based on improved Elman. Information of future and past prediction system is fused and memory of network for time series feature’s information is strengthened by this model which depends on the feedback of connective layer. The method effectively improves the predictive accuracy. The model presented by the paper needs not to determine the number of model order in predicting battery array power. The simulation results indicate that its predictive accuracy is greatly improved by comparison with unidirectional model, and that the model has a better generalization ability.
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2004年第4期404-408,共5页
Journal of Nanjing University of Science and Technology
基金
国家高技术研究发展计划 (86 3- 2 0 0 2AA72 10 6 3)
关键词
ELMAN神经网络
双向预测模型
卫星电池阵功率
预测
Elman neural network
bi directional prediction model
satellite battery array power
prediction