期刊文献+

ADAPTIVE ELLIPSOIDAL ACOUSTIC INFINITE ELEMENT 被引量:1

ADAPTIVE ELLIPSOIDAL ACOUSTIC INFINITE ELEMENT
下载PDF
导出
摘要 It is shown that the basis of the ellipsoidal acoustic infinite elementBurnett method, the multipole expansion, cannot represent real ellipsoidal acoustic field exactly.To solve the problem, a weight of angular direction is added to the multipole expansion. Thecomparison of the modified method and the prime method shows that the modified method can describeand solve the ellipsoidal acoustic field more accurately than ever. A dilating sphere is used totest the new method further. Unlike other infinite element methods, varied ratio of the ellipsoidalartificial boundary instead of sphere is used. The pressure value of the artificial boundary isutilized as the initial value of the new method. Then the radiating phenomena of the ellipsoidalacoustic field can be researched using the new method. These examples show the feasibility of theadaptive method. It is shown that the basis of the ellipsoidal acoustic infinite elementBurnett method, the multipole expansion, cannot represent real ellipsoidal acoustic field exactly.To solve the problem, a weight of angular direction is added to the multipole expansion. Thecomparison of the modified method and the prime method shows that the modified method can describeand solve the ellipsoidal acoustic field more accurately than ever. A dilating sphere is used totest the new method further. Unlike other infinite element methods, varied ratio of the ellipsoidalartificial boundary instead of sphere is used. The pressure value of the artificial boundary isutilized as the initial value of the new method. Then the radiating phenomena of the ellipsoidalacoustic field can be researched using the new method. These examples show the feasibility of theadaptive method.
出处 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期293-296,共4页 中国机械工程学报(英文版)
关键词 Burnett method Multipole expansion Infinite element Burnett method Multipole expansion Infinite element
  • 相关文献

参考文献16

  • 1[1]Harari I,Hughes T.A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics.Comput Methods Appl.Mech.Engrg.,1992,97(1):77~102
  • 2[2]Burnett D.A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion.J.Acoust.Soc.Am.,1994,96(5):2 798~2 816
  • 3[3]Astley R J,Macaulay G J.Mapped wave envelope for acoustical radiation and scattering.Journal of Sound and Vibration,1994,170(1):97~118
  • 4[4]Shirron J J,Babuska I.A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems.Comput.Methods.Appl.Mech.Engrg.,1998,164(1):123~139
  • 5[5]Storti M A.The D&N absorbing condition:applications to wave problems.Comput Methods Appl.Mech.Engrg.,2000,182(2):483~498
  • 6[6]Givoli D,Patlashenko I.An optimal high-order non-reflecting finite element scheme for wave scattering problems.Int.J.Numer.Meth.Engng.,2002,53(5):2 389~2 411
  • 7[7]Bettess P.Infinite Element.Penshaw,Sunderland,UK:P.Bettess,1992
  • 8[8]Gerdes K.A summary of infinite element formulations for exterior Helmholtz problems.Comput.Methods.Appl.Mech.Engrg.,1998,164(1):95~105
  • 9[9]Gerdes K.A review of infinite element methods for exterior Helmholtz problem.Journal of Computational Acoustics,2000,8(1):43~62
  • 10[10]Astley R J.Infinite elements for wave problems:A review of current formulations and an assessment of accuracy.International Journal for Numerical Methods in Engineering,2000,49(3):951~976

同被引文献11

  • 1Bettess P.Infinte elements[J].Internat J Numer Methods Engry,1977,11(1):53-64.
  • 2Burnett David S. A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion[ J]. J Acoust Soc Amer, 1994,96(5) :2798-2816.
  • 3Astley R J,Macaulay G J. Mapped wave envelope for acoustical radiation and scattering[J]. J Sound Vibration, 1994,170(1) :97-118.
  • 4Gerdes K. Solution of the 3D-Helmholtz equation in the exterlof domain of arbitrary shape using hpfinite- infinite elements[J]. Finite Elements in Analysis and Design, 1998,29(1): 1-20.
  • 5Bettess P. Infinite Element[M].London: Wheeler's Hill, 1992:1-264.
  • 6Gerdes K. A summary of infinite element formulations for exterior Helmholtz problems [ J ] . Comput Methods Appl Mech Engrg, 1998,164(1) :95-105.
  • 7Astley R J. Infinite elements for wave problems: A review of current formulations and an assessment of accuracy[J]. Internat J Numer Methods Engrg,2000,49(3) :951-976.
  • 8Astley R J, Coyette J P. The performance of spheroidal infinite elements[J]. Internat J Numer Methods Engrg ,2001,52(3): 1379-1396.
  • 9Shirron Joseph J, Babuska Ivo. A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems[ J]. Comput Methods Appl Mech Engrg, 1998, 164(1):123-139.
  • 10Shirron Joseph J, Dey Saikat. Acoustic infinite elements for non-separable geometries[ J]. Comput Methods Appl Mech Engrg, 2002,191 (5) :4123-4139.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部