期刊文献+

基于人工免疫机制的RBF网络混合训练算法(英文)

Hybrid RBF training algorithm based onartificial immunology
下载PDF
导出
摘要 基于人工免疫聚类机制和免疫进化算法,提出了一种新型的设计RBF网络的混合算法。该方法利用人工免疫聚类机制,根据输入数据集合自适应地确定RBF网络核函数的数量及其中心的初始位置。采用免疫进化算法训练RBF网络,进一步缩小了标准进化算法搜索空间的范围,提高了算法的收敛速度。计算机仿真表明,这种RBF网络结构精简并具有较强的泛化能力。 Based on artificial immune clustering and Immune Evolutionary Algorithm (IEA), a novel hybrid RBF design method is proposed. The artificial immune clustering is used to adaptively specify the amount and initial position of centers of basis functions in RBF network according to input data set. Then immune evolutionary algorithm is used to train the RBF network, which reduces the searching space of canonical evolutionary algorithm and improves the convergence speed. Computer simulations demonstrate that the RBF network designed in this method has a concise structure with good generalization ability.
出处 《红外与激光工程》 EI CSCD 北大核心 2004年第3期311-315,共5页 Infrared and Laser Engineering
关键词 人工免疫聚类 免疫进化算法 径向基函数网络 Computer simulation Data reduction Evolutionary algorithms Functions Fuzzy sets Immunology Neural networks Problem solving Vectors
  • 相关文献

参考文献7

  • 1Bernard Mulgrew. Applying radial basis functions[J]. IEEE Signal Processing Magazine, 1996, 13(2): 50-65.
  • 2Jang Sung Chun, Min Kyu Kim, Hyun Kyo Jung. Shape optimization of electromagnetic device using immune algorithm[J]. IEEE Transaction on Magnetics, 1997,33(2):1876-1879.
  • 3Jiao Licheng, Wang Lei. A novel genetic algorithm based on immunity[J]. IEEE Trans on Systems, Man and Cybernetics, 2000, 30(5): 552-561.
  • 4D Curtis Schleher. Electronic warfare in the information age[M]. USA:Artech House, 1999.
  • 5Angeline P J, Saunders G M, Pollack J B. An evolutionary algorithm that constructs recurrent neural networks[J]. IEEE Trans on Neural Networks, 1994, 5(1): 54-64.
  • 6Moody J, Darken C. Fast learning in networks of locally-tuned processing units[J]. Neural Computation, 1989,1(2): 281-294.
  • 7Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithms for radial basis function networks[J]. IEEE Trans on Neural Networks, 1991, 2(2): 302-309.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部