摘要
基于人工免疫聚类机制和免疫进化算法,提出了一种新型的设计RBF网络的混合算法。该方法利用人工免疫聚类机制,根据输入数据集合自适应地确定RBF网络核函数的数量及其中心的初始位置。采用免疫进化算法训练RBF网络,进一步缩小了标准进化算法搜索空间的范围,提高了算法的收敛速度。计算机仿真表明,这种RBF网络结构精简并具有较强的泛化能力。
Based on artificial immune clustering and Immune Evolutionary Algorithm (IEA), a novel hybrid RBF design method is proposed. The artificial immune clustering is used to adaptively specify the amount and initial position of centers of basis functions in RBF network according to input data set. Then immune evolutionary algorithm is used to train the RBF network, which reduces the searching space of canonical evolutionary algorithm and improves the convergence speed. Computer simulations demonstrate that the RBF network designed in this method has a concise structure with good generalization ability.
出处
《红外与激光工程》
EI
CSCD
北大核心
2004年第3期311-315,共5页
Infrared and Laser Engineering
关键词
人工免疫聚类
免疫进化算法
径向基函数网络
Computer simulation
Data reduction
Evolutionary algorithms
Functions
Fuzzy sets
Immunology
Neural networks
Problem solving
Vectors