期刊文献+

埃达克岩研究及斑岩铜矿找矿新方向 被引量:10

REVIEW ON ADAKITE AND NEW DIRECTION FORFINDING PORPHYRY COPPER DEPOSIT
下载PDF
导出
摘要 埃达克岩是一种成因方式特殊的钙碱性系列岩浆岩 ,其典型特征是 :SiO2 ≥ 5 6 % ,Al2 O3 ≥ 1 5 % ,MgO通常小于 3% ,贫Y和Yb(Y≤ 1 8× 1 0 -6,Yb≤ 1 .9× 1 0 -6) ,高Sr(多数大于 4 0 0× 1 0 -6) ,LREE富集 ,无Eu异常或仅有轻微的负Eu异常。其成因主要有两类 :一类由俯冲板片的部分熔融成因 (O型 ) ;另一类由玄武质岩浆底侵下地壳时发生部分熔融或下地壳拆沉作用成因 (C型 )。两类埃达克岩都与斑岩铜矿的成矿作用存在着密切的关系。世界上大多数超大型的斑岩铜矿与O型埃达克岩有关 ,而我国的斑岩铜矿则大多数与C型埃达克岩有关。埃达克岩可作为一种重要的找矿标志 。 Adakite is a kind of acid-intermediate and calc-alkaline igneous rock. Its typal characteristics are: SiO2≥56%,Al2O3≥15%,MgO>3%,relatively poor Y and Yb(Y≤18×10-6,Yb≤1.9×10-6),high Sr(>400×10-6),rich LREE,absent or slightly negative Eu anomaly. There are two types of adakites (C-type and O-type) with different petrogenesis. The O-type adakite is formed by the partially melting of subducted slab. The C-type adakite is formed by the partially melting of basaltic lower crust under the continental accretion setting or the delamination of lower crust. They are all closely associated with the mineralization of porphyry copper deposits. The super large porphyry copper deposits are usually related to the O-type adakites in the world. However, porphyry copper deposits in China are mainly associated with the C-type adakites. It is concluded that a new direction for prospecting of porphyry copper deposits can be supplied because adakite would be used as a new exploration indication to find large-size or superlarge-size porphyry copper deposits.
作者 廖宗廷
机构地区 同济大学
出处 《铜业工程》 CAS 2004年第2期1-6,共6页 Copper Engineering
基金 上海市科学技术委员会资助科研项目 ( 0 3DZ0 5 0 10 )
关键词 埃达克岩 斑岩铜矿 找矿勘探 德兴铜矿 Adakite Porphyry copper deposits Prospecting Dexin copper ore deposit
  • 相关文献

参考文献40

  • 1[1]Kay R M.Aleutian magnetsian andesites: melts from subducted Pacific Ocean crust[J].Volcanol Geotherm Res,1978,4:117~132.
  • 2[2]Defant M J,Drummond M S.Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Nature,1990,347:662~665.
  • 3[3]Drummond M S,Defant M J.A model for trondhjemite-tonatite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons[J].Geophs. Res.1990,95(B13):21503~21521.
  • 4[4]Atherton M P.Generation of sodium-rich magmas from newly underplated basaltic crust[J].Nature, 1993,362:144~146.
  • 5[5]Peacock S M, Rushmer T,Thompson A B.Partial melting of subducting oceanic crust[J].Earth Planet Sci. Lett.1994,121:227~244.
  • 6[6]Muir R J, Weaver S D, Bradshaw J D,et al.Geochemistry of the Cretaceous Separation Plint Batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere[J].J. Geol. Soc. Lond, 1995,152:698~701.
  • 7[7]Gromet L P,Silver L.REE variations across the peninsular range batholith:impications for batholithic petrogenisis and crustal growth in magmatic arc[J].Journal of Petrology, 1987,28:75~125.
  • 8[8]Defant M J,Kepezhinskas P.Evidence suggests slab melting in arc magmas[J].EOS, 2001,82:67~69.
  • 9[9]Thieblemont D, Stein G, Lescuyer J-L.Gisements epithemaux et Prophyuiques: la connexion adakite[J].Earth Planet Sci,1997, 325:103~109.
  • 10[10]Oyarzun R, Morquez A, Lillo J, et al.Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism[J]. Mineral Deposit, 2001, 36:794~798.

二级参考文献112

共引文献1024

同被引文献248

引证文献10

二级引证文献277

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部