摘要
The graphite materials have been used as negative electrodes in commercial Li-ion batteries for many years. In order to avoid the exfoliation of graphite sheet in the PC-based electrolyte system, it is necessary to make the surface modification on the graphite material. In this study, the electrochemical behavior of carbon-coated graphite in PC-based electrolyte was investigated by charge and discharge cycling process. The carbon-coated graphite can increase the reversible from 366 mA/g to 399mAh/g and improve cycle ability in the PC-based electrolyte system. So the carbon-coated graphite can become the promising high-capacity anode materials of Li-ion battery.
The graphite materials have been used as negative electrodes in commercial Li-ion batteries for many years. In order to avoid the exfoliation of graphite sheet in the PC-based electrolyte system, it is necessary to make the surface modification on the graphite material. In this study, the electrochemical behavior of carbon-coated graphite in PC-based electrolyte was investigated by charge and discharge cycling process. The carbon-coated graphite can increase the reversible from 366 mA/g to 399mAh/g and improve cycle ability in the PC-based electrolyte system. So the carbon-coated graphite can become the promising high-capacity anode materials of Li-ion battery.
出处
《电池工业》
CAS
2004年第1期5-7,共3页
Chinese Battery Industry
基金
Sponsored by the Ministry of Economic Affairs of Tarwan (project number 91-EC-A-17-0312)