期刊文献+

广义不均衡网络流的改进算法及其应用 被引量:6

AN IMPROVEMENT ALGORITHM AND APPLICATION OF GENERALIZED OUT OF KILTER NETWORK FLOW
下载PDF
导出
摘要 提出了一种改进的广义不均衡网络流(Out of Kilter)算法。新算法可以求解有可分凸费用的非线性网络流问题。算法将上述非线性问题转化为多个最大流问题求解,并为求解非线性可分凸费用网络流问题提出了通用的求解框架。证明了算法的最优性和收敛性。新算法比原算法更高效、简明,更适合求解大型和超大型的非线性可分凸费用网络流问题。用750节点和5010条弧的网络对本算法作了试算,计算结果说明算法有较高的效率。该算法已被用于三峡水火联合电力系统经济调度及电力市场中,实践证明算法是正确和有效的。 Based on Generalized Out of Kilter Algorithm, a new algorithm that is capable of solving Nonlinear Network Flow Problem with Convex Separable Costs (NNFPCSC), is presented. This algorithm translates the process of solving NNFPCSC into solving of many maximum flow problems, and provides a general frame for solving NNFPCSC. Also, its optimality and convergence is proved. Compared with the original one, this algorithm has higher calculation speed and suitability for solving large or super scale NNFPCSC. Tests with networks of more than 700 nodes and 5000 arcs have been performed and their Results shown the high efficiency of the algorithm. The algorithm has been applied to Optimal Dispatching of Three Gorges Hydro-thermal Power System and electricity markets. The successful application has demonstrated that the algorithm is valid and efficient.
出处 《中国电机工程学报》 EI CSCD 北大核心 2004年第7期59-63,共5页 Proceedings of the CSEE
关键词 电力系统规划 非线性优化 广义不均衡网络流算法 电网 Electric power engineering Network flow algorithm Non-linear optimization Out of kilter algorithm Power system optimal dispatch Electricity Markets
  • 相关文献

参考文献14

  • 1何光宇,杨勤,陈雪青.一种新的非线性最小费用网络流算法[J].清华大学学报(自然科学版),1999,39(5):35-38. 被引量:10
  • 2何光字.网络最优化算法的研究及其应用[D].北京:清华大学电机工程系,1999.He Guangyu. The study on network programming and its application[D].Beijing: Department of Electrical Engineering, Tsinghua University ,1999.
  • 3Dembo R S , Klincewicz J G. A scales reduced gradient algorithm for network flow problems with convex separable cost[J]. Math Program Study, 1981,15(1): 125-147.
  • 4Dembo R S. A primal truncated Newton algorithm with application to nonlinear network optimization[J]. Math Program Study, 1987,31(2):43-72.
  • 5Zuyi Li, He GY, Chen X Q, Network flow based algorithm on dynamic optimal dispatch[C]. POWERCON '2000, Perth, 1533-1538, 2000.
  • 6陈雪青,郑彤昕,石光,阮前途,高家芬,吴竹亭,陈开庸.有抽水蓄能电站的联合电力系统优化调度模型和算法[J].中国电机工程学报,1995,15(4):274-280. 被引量:16
  • 7Kennington J L, Helgason K V, Algorithms for network programming[M]. New York:John Wiley & Sons,1981.
  • 8Ford L R, Fulkerson D R. Maximal flow through a network[J]. Canad. J.Math., 1956, 8(3): 399-404.
  • 9Danzig G.B, Fulkerson D R. On the max-flow min-cut theorem of networks, in linear inequalities and related systems[M]. Kuhn H.W. and Tucker A.W., eds. Annals of Mathematics Study 38. Princeton:Princeton University Press, 1956.
  • 10Elias P, Feinstein A, Shannon C E. Note on maximum flow0 through a network[J]. IRE Trans. Inform. Theory, 1956, 2(2): 117-119.

二级参考文献12

共引文献53

同被引文献79

引证文献6

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部