期刊文献+

Real-Time Thermal Ward-Takahashi Identity for Vectorial Current in QED and QCD

下载PDF
导出
摘要 It is shown that by means of canonical operator approach the Ward-Takahashi identity (WTI) at finite temperature T and finite chemical potential μ for complete vectorial vertex and complete fermion propagator can be simply proven, rigorously for Quantum Electrodynamics, and approximately for Quantum Chromodynamics, where the ghost effect in the fermion sector is neglected. The WTI shown in the real-time thermal matrix form will give definite thermal constraints on the imaginary part of inverse complete Feynman propagator including self-energy for fermion and will play an important role in relevant physical processes. When the above inverse propagator is assumed to be real, the thermal WTI will essentially be reduced to its form at T = μ = 0 thus one can use it in the latter's form. At this point,a practical example is indicated.
作者 ZHOUBang-Rong
机构地区 DepartmentofPhysics
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第1X期79-82,共4页 理论物理通讯(英文版)
基金 国家自然科学基金
  • 相关文献
  • 1李子平.正则形式的Ward—Takahashi恒等式[J].黄淮学刊(自然科学版),1993,9(1):20-26.
  • 2沈坤,裘忠平.(2+1)维SU(2)四费米子耦合理论的Ward-Takahashi恒等式和质量谱[J].高能物理与核物理,1993,17(1):17-27.
  • 3包爱东,吴式枢.Derivation of the Ward-Takahashi Identity in GWS Gauge Theory[J].Chinese Physics Letters,2008,25(1):62-65.
  • 4陈立安,顾书龙.夸克的反常磁矩[J].巢湖学院学报,2007,9(6):34-37.
  • 5K.A.Olive,K.Agashe,C.Amsler,M.Antonelli,J.-F.Arguin,D.M.Asner,H.Baer,H.R.Band,R.M.Barnett,T.Basaglia,C.W.Bauer,J.J.Beatty,V.I.Belousov,J.Beringer,G.Bernardi,S.Bethke,H.Bichsel,O.Biebe,E.Blucher,S.Blusk,G.Brooijmans,O.Buchmueller,V.Burkert,M.A.Bychkov,R.N.Cahn,M.Carena,A.Ceccucci,A.Cerr,D.Chakraborty,M.-C.Chen,R.S.Chivukula,K.Copic,G.Cowan,O.Dahl,G.D'Ambrosio,T.Damour,D.de Florian,A.de Gouvea,T.DeGrand,P.de Jong,G.Dissertor,B.A.Dobrescu,M.Doser,M.Drees,H.K.Dreiner,D.A.Edwards,S.Eidelman,J.Erler,V.V.Ezhela,W.Fetscher,B.D.Fields,B.Foster,A.Freitas,T.K.Gaisser,H.Gallagher,L.Garren,H.-J.Gerber,G.Gerbier,T.Gershon,T.Gherghetta,S.Golwala,M.Goodman,C.Grab,A.V.Gritsan,C.Grojean,D.E.Groom,M.Grnewald,A.Gurtu,T.Gutsche,H.E.Haber,K.Hagiwara,C.Hanhart,S.Hashimoto,Y.Hayato,K.G.Hayes,M.Heffner,B.Heltsley,J.J.Hernandez-Rey,K.Hikasa,A.Hocker,J.Holder,A.Holtkamp,J.Huston,J.D.Jackson,K.F.Johnson,T.Junk,M.Kado,D.Karlen,U.F.Katz,S.R.Klein,E.Klempt,R.V.Kowalewski,F.Krauss,M.Kreps,B.Krusche,Yu.V.Kuyanov,Y.Kwon,O.Lahav,J.Laiho,P.Langacker,A.Liddle,Z.Ligeti,C.-J.Lin,T.M.Liss,L.Littenberg,K.S.Lugovsky,S.B.Lugovsky,F.Maltoni,T.Mannel,A.V.Manohar,W.J.Marciano,A.D.Martin,A.Masoni,J.Matthews,D.Milstead,P.Molaro,K.Monig,F.Moortgat,M.J.Mortonson,H.Murayama,K.Nakamura,M.Narain,P.Nason,S.Navas,M.Neubert,P.Nevski,Y.Nir,L.Pape,J.Parsons,C.Patrignani,J.A.Peacock,M.Pennington,S.T.Petcov,Kavli IPMU,A.Piepke,A.Pomarol,A.Quadt,S.Raby,J.Rademacker,G.Raffel,B.N.Ratcliff,P.Richardson,A.Ringwald,S.Roesler,S.Rolli,A.Romaniouk,L.J.Rosenberg,J,L.Rosner,G.Rybka,C.T.Sachrajda,Y.Sakai,G.P.Salam,S.Sarkar,F.Sauli,O.Schneider,K.Scholberg,D.Scott,V.Sharma,S.R.Sharpe,M.Silari,T.Sjostrand,P.Skands,J.G.Smith,G.F.Smoot,S.Spanier,H.Spieler,C.Spiering,A.Stahl,T.Stanev,S.L.Stone,T.Sumiyoshi,M.J.Syphers,F.Takahashi,M.Tanabashi,J.Terning,L.Tiator,M.Titov,N.P.Tkachenko,N.A.Tornqvist,D.Tovey,G.Valencia,G.Venanzoni,M.G.Vincter,P.Vogel,A.Vogt,S.P.Wakely,W.Walkowiak,C.W.Walter,D.R.Ward,G.Weiglein,D.H.Weinberg,E.J.Weinberg,M.White,L.R.Wiencke,C.G.Wohl,L.Wolfenstein,J.Womersley,C.L.Woody,R.L.Workman,A.Yamamoto,W.-M.Yao,G.P.Zeller,O.V.Zenin,J.Zhang,R.-Y.Zhu,F.Zimmermann,P.A.Zyla,G.Harper,V.S.Lugovsky,P.Schaffner.QUANTUM CHROMODYNAMICS[J].Chinese Physics C,2014,38(9):122-138.
  • 6S. Bethke,G. Dissertori,G.P. Salam.QUANTUM CHROMODYNAMICS[J].Chinese Physics C,2016,40(10):132-150.
  • 7S. Hashimoto,J. Laiho,S.R. Sharpe.LATTICE QUANTUM CHROMODYNAMICS[J].Chinese Physics C,2016,40(10):310-320.
  • 8沈坤,裘忠平.(2+1)维手征Gross-Neveu模型的Ward-Takahashi恒等式和质量谱[J].高能物理与核物理,1992,16(1):29-37.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部