摘要
借助于人工智能搜索技术,Xu等人提出了计算量优于B&B算法的全局最优特征提取BF*算法。本文在分析了BF*算法搜索树T_B结构的基础上,提出了一种比T_B具有更少节点的搜索树T_b及相应的BF**算法。并证明,在不另增加存贮量和保持全局最优特性的前提下,BF**算法在计算量方面优于BF*算法。
With AI technology in searching, Xu, et al. presented a global optimum feature selection algorithm, BF, which is computationally superior to B&B one. Based on the analysis of search tree TB used in BF, this paper proposes a new structure of search tree, Tb, on which there are fewer nodes than on TB. A feature selection algorithm on Tb, referred as to BF, is designed, of which the computational complexity is lower than BF's, without increasing storage and with global optimum property.
出处
《电子学报》
EI
CAS
CSCD
北大核心
1993年第4期52-57,共6页
Acta Electronica Sinica
基金
国家自然科学基金(9690015)
中国博士后科学基金
关键词
模式识别
特征提取
人工智能
计算
Pattern recognition, Feature selection, Artificial intelligence, Search tree, Global optimum