摘要
Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameter in the search directions. In this note, conditions are given on the parameter in the conjugate gradient directions to ensure the descent property of the search directions. Global convergence of such a class of methods is discussed. It is shown that, using reverse modulus of continuity function and forcing function, the new method for solving unconstrained optimization can work for a continuously differentiable function with a modification of the Curry-Altman's step-size rule and a bounded level set. Combining PR method with our new method, PR method is modified to have global convergence property.Numerical experiments show that the new methods are efficient by comparing with FR conjugate gradient method.