期刊文献+

Seasonal variability of thermocline in the Yellow Sea 被引量:3

Seasonal variability of thermocline in the Yellow Sea
下载PDF
导出
摘要 Based on the MASNUM wave-tide-circulation coupled numerical model, seasonal variability of thermocline in the Yellow Sea was simulated and compared with in-situ observations. Both simulated mixed layer depth (MLD) and thermocline intensity have similar spatial patterns to the observations. The simulated maximum MLD are 8 m and 22 m, while the corresponding observed values are 13 m and 27 m in July and October, respectively. The simulated thermocline intensity are 1.2℃/m and 0.5℃/m in July and October,respectively, which are 0.6℃/m less than those of the observations. It may be the main reason why the simulated thermocline is weaker than the observations that the model vertical resolution is less precise than that of the CTD data which is 1 m. Contours of both simulated and observed thermocline intensity present a circle in general. The wave-induced mixing plays a key role in the formation of the upper mixed layer in spring and summer. Tidal mixing enhances the thermocline intensity. Buoyancy-driven mixing destroys the thermocline in autumn and keeps the vertical temperature uniform in winter. Based on the MASNUM wave-tide-circulation coupled numerical model, seasonal variability of thermocline in the Yellow Sea was simulated and compared with in-situ observations. Both simulated mixed layer depth (MLD) and thermocline intensity have similar spatial patterns to the observations. The simulated maximum MLD are 8 m and 22 m, while the corresponding observed values are 13 m and 27 m in July and October, respectively. The simulated thermocline intensity are 1.2℃/m and 0.5℃/m in July and October, respectively, which are 0.6℃/m less than those of the observations. It may be the main reason why the simulated thermocline is weaker than the observations that the model vertical resolution is less precise than that of the CTD data which is 1 m. Contours of both simulated and observed thermocline intensity present a circle in general. The wave-induced mixing plays a key role in the formation of the upper mixed layer in spring and summer. Tidal mixing enhances the thermocline intensity. Buoyancy-driven mixing destroys the thermocline in autumn and keeps the vertical temperature uniform in winter.
出处 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2004年第3期299-305,共7页 中国海洋湖沼学报(英文版)
基金 SupportedbytheNationalBasicResearchProgramofChina(G1999043809)theNationalScienceFoundationofChina(No.49736190).
关键词 thennocline the Yellow Sea wave-tide-circulation coupled model wave-induced mixing tidalmixing 季节形变化 温度突变层 波浪 潮汐 环流 黄海
  • 相关文献

参考文献3

二级参考文献11

共引文献70

同被引文献66

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部