期刊文献+

ON JENSEN'S INEQUALITY FOR g-EXPECTATION 被引量:26

ON JENSEN'S INEQUALITY FOR g-EXPECTATION
原文传递
导出
摘要 Briand et al. gave a counterexample showing that given g, Jensen's inequality for g-expectation usually does not hold in general This paper proves that Jensen's inequality for g-expectation holds in general if and only if the generator g (t, z) is super-homogeneous in z. In particular, g is not necessarily convex in z.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2004年第3期401-412,共12页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (No.10131030)
关键词 Backward stochastic differential equation Jensen's inequality g-expectaation Conditional g-expectation Comparison theorem 延森不等式 期望 反例 证明论 比较定理
  • 相关文献

参考文献8

  • 1[1]Peng, S., BSDE and related g-expectations, Pitman Research Notes in Mathematics Series, 364, 1997,141-159.
  • 2[2]Chen, Z. & Epstein, L., Ambiguity, risk and asset returns in continuous time, Econometrica, 70(2002),1403-1443.
  • 3[3]Briand, P., Coquet, F., Hu, Y., Memin, J. & Peng, S., A converse comparison theorem for BSDEs and related properties of g-expectation, Electon. Comm. Probab., 5(2000), 101-117.
  • 4[4]Coquet, F., Hu, Y., Memin, J. & Peng, S., Filtration consistent nonlinear expectations and related g-expectation, Probab. Theory Related Fields, 123(2002), 1-27.
  • 5[5]Chen, Z. & Peng, S., A general downcrossing inequality for g-martingales, Statistics and Probability Letters, 46(2000), 169-175.
  • 6[6]Pardoux, E. & Peng, S., Adapted solution of a backward stochastic differential equation, Systems Control Letters, 14(1990), 55-61.
  • 7[7]Peng, S., A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation,Stochastics, 38:2(1992), 119-134.
  • 8[8]El Karoui, N., Peng, S. & Quenez, M. C., Backward stochastic differential equations in finance, Math.Finance, 7:1(1997), 1-71.

同被引文献86

引证文献26

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部