期刊文献+

SOME REMARKS ABOUT THE R-BOUNDEDNESS 被引量:2

SOME REMARKS ABOUT THE R-BOUNDEDNESS
原文传递
导出
摘要 Let X,Y be UMD-spaces that have property (α), 1< p< ∞ and let M be anR-bounded subset in L(X, Y). It is shown that {T(M_k)_(k∈z): M_k, k(M_(k+l)-M_k) ∈M for k∈Z} is an R-bounded subset of L(L^p (0,2π; X), L^p(0,2π; Y)), where T(M_m)_(k∈zdenotes the L^p-multiplier given by the sequence (M_k)_(k∈z), This generalizes a resultof Venni [10]. The author uses this result to study the strongly L^p-well-posedness ofevolution equations with periodic boundary condition. Analogous results for operator-valued L^p-multipliers on R are also given.
作者 BUSHANGQUAN
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2004年第3期421-432,共12页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (No.10271064) and the Excel-lent Young Teachers Program of the Ministry of Education of China
关键词 Operator-valued Fourier multiplier Maximal regularity Rademacher boundedness 集合 子集 序列 边界条件 周期 算子
  • 相关文献

参考文献13

  • 1[1]Arendt, W. & Bu, S., The operator-valued Marcinkiewicz multiplier theorem and maximal regularity,Math. Z., 240:2(2002), 311-343.
  • 2[2]Arendt, W. & Bu, S., Tools for maximal regularity, Math. Proc. Cambridge Philo. Soc., 134(2003),317-336.
  • 3[3]Bourgain, J., Vector valued singular integrals and the H1-BMO duality, in Probability Theory and Harmonic Analysis, Burkholder (ed.), Marcel Dekker, New York, 1986, 1-19.
  • 4[4]Ph. Clement & Pruss, J., An operator-valued transference principle and maximal regularity on vectorvalued Lp-spaces, in Evolution Equations and Their Applications in Physics and Life Sciences, Lumer& Weis (eds.), Marcel Dekker, 2000.
  • 5[5]Ph. Clement, de Pagter, B., Sukochev, F. A. & Witvliet, M., Schauder decomposition and multiplier theorems, Studia Math, 138(2000), 135-163.
  • 6[6]Dore, G., Lp-regularity for abstract differential equations, in Functional Analysis and Related Topics,H. Komatsu (ed.), Springer LNM 1540, 1993, 25-38.
  • 7[7]Lindenstrauss, J. & Tzafriri, L., Classical Banach Spaces Ⅱ, Springer, Berlin, 1996.
  • 8[8]McConnell, T. R., On Fourier multiplier transformations of Banach-valued functions, Trans. A.M.S.,285(1984), 739-757.
  • 9[9]Pisier, G., Some results on Banach spaces without local unconditional structure, Compositio Math.,37(1978), 3-19.
  • 10[10]Venni, A., Marcinkiewicz and Mihlin multiplier theorems, and R-boundedness, Evolution Equations:Applications to Physics, Industry, Life Sciences and Economics, Levio Terme, 2000, 403-413, Progr.Nonlinear Differential Equations Appl, 55, Birkhauser, Basel, 2003.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部