摘要
设M^n是浸入在n+p维黎曼流形S^(n+p)中的n维紧致子流形,∧表示M^n上的拉氏算子,本文得到了∧的第一非零特征值的下界和上界。
Let Mn be an x-dimensional compact submanifold with constant mean curvature, which is immersed in a Riemannian manifold Sn+7 . and △ denotes the Laplacian on Mn. Both the upper bound and under bound of the first nonzero eigenvalue are thus given.
关键词
第一特征值
黎曼流形
子流形
first eigenvalue, Laplacian, totally geodesic.