期刊文献+

基于高能电子束曝光的相对论卢瑟福公式研究 被引量:2

Research on Relativistic Rutherford Formula for High-energy Electron Beam Lithography
下载PDF
导出
摘要 高能电子运动速度较大,相对论效应很明显。传统的卢瑟福弹性散射公式是由非相对论的薛定谔波动方程得出的,在预言高能电子束曝光时,需要对其进行相对论修正。采用Born近似解相对论的Dirac方程,得到相对论修正的卢瑟福公式。计算元素Si、O、C、H的弹性散射截面和散射角,与修正前的计算结果进行比较,结果表明,当电子能量达到100keV时,其相对论效应已经很明显。 Recently, High-energy electron beam lithography has attracted much attention. The velocity of high-energy electron is high, so the relativity effect must be tak- en into account in this case. The conventional Rutherford elastic scattering formula was based on non-relativistic wave equation of Schrdinger, so it must be corrected to predict the high-energy electron beam lithography. In this article, relativity correction of Rutherford formula is derived from the Dirac equation using Born's approximation. The elastic scattering cross-section and scattering angle of elements Si, O, C, H by relativistic Rutherford formula are calculated and the results are compared to that of non-relativistic Rutherford formula, which showed that the relativity effect is very clear in the case of 100 keV electron.
出处 《微细加工技术》 2004年第3期5-9,共5页 Microfabrication Technology
基金 中国科学院"引进海外杰出人才基金"2001年资助项目(20011215)
关键词 高能电子束曝光 卢瑟福弹性散射公式 MONTE CARLO方法 弹性散射截面 相对论修正 high-energy beam lithography Rutherford elastic scattering formula Monte Carlo method elastic scattering section relativity correction
  • 相关文献

参考文献8

  • 1K Murata, H Kawata, K Nagami. Studies of energy dissipation in resist films by a Monte Carlo simulation based on the Mott cross section[J]. J Vac Sci Technol, 1987,B5(1):124- 125.
  • 2Masatishi Kotera, Ryoji Ijichi, Takafumi Fujiwara, et al. A simulation of electron scattering in metals[J].Jpn J Appl Phys, 1990, 29(10):2277- 2282.
  • 3Masatoshi Kotera, Kenji Murata, Koichi Nagami. Monte Carlo simulation of 1 keV- 10 keV electron scattering in a gold target[J]. J Appl Phys, 1981, 52(2):997- 1003.
  • 4Mott, Massey. The Theory of Atomic Collisious[ M]. London: Oxford University Press, 1965.
  • 5I Adesida, R Shimizu, T E Everhart. A study of electron penetration in solids using a direct Monte Carlo approach[J]. J Appl Phys, 1980,51(11):5692-5969.
  • 6Norihiko Samoto, Ryuichi Shimizu. Theoretical study of the ultimate resolution in electron beam lithography by Monte Carlo simulation including secondary electron generation: Energy dissipation profile in polymethylmethacrylate[J]. J Appl Phys, 1983,54(7): 3855 - 3859.
  • 7EH威切曼.量子物理学:伯克利物理学教程(第四卷)[M].北京:科学出版社,1978..
  • 8D F Kyser, K Murata. Quantitative electron microprobe analysis of thin film on substrate[R]. IBM: J Res Develop, 1974.

同被引文献4

  • 1[1]Hohn F J,Waston T J.Electron beam lithography directions in direct write and mask making[J].SPIE,1990,1263:152-163.
  • 2[2]Mott and Massey.The Theory of Atomic Collisions[M].London:Oxford University Press,1965.
  • 3[3]Bonham R A,Strand T G.Analytical expressions for potentials of neutral Thomas-Fermi-Dirac atoms and for the corresponding atomic scattering factors for X rays and electorns[ J].The Journal of Chemical Physics,1963,39(9):2200-2204.
  • 4[5]威切曼E H.量子物理学《伯克利物理学教程》第四卷[M].北京:科学出版社,1978.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部