期刊文献+

复杂背景下多目标提取的高灵敏度方法 被引量:1

A high sensitivity method for detection of small targets from the complicated background
下载PDF
导出
摘要 对电视经纬仪拍摄到的飞行小目标图像进行了归一化高斯模板相关。传统的模板相关方法不能将真假目标集合充分分离,导致真目标的漏检或引入虚假目标。基于模板相关的高斯函数拟合方法(Gaussian Function Fitting Method, GFFM),对模板相关所得到的目标集(含有真目标和假目标)中的每一个元素进行高斯函数拟合,并引入了一个更为灵敏的检验量—高斯函数拟合误差,可以将真假目标集合明显区分开,减小阈值确定的难度。实验表明:当相关系数阈值rth=0.8时,传统模板相关方法漏检率20%,虚警率40%;而GFFM方法则检出了所有真目标,且无虚假目标。 In order to detect the small flying targets acquired TV theodolite with complicated background, the template correlation is performed with the normalized Gaussian template. The real targets cannot be entirely separated from the real and false targets set with the traditional template correlation method. This leads to omission of real targets or the confusion of the false ones. A Gaussian function fitting method based on template correlation is proposed. With this method, Gaussian function fitting for each element in targets set (including real targets and false targets) obtained by template correlation can be performed and a more sensitive testing quantityGaussian function fitting error has been introduced. This can distinguish the real targets set from the false targets set and this reduces the difficulty for determining threshold. The experiments show that when correlation coefficient threshold rth=0.8, the undetected probability of the traditional template correlation method is 20% and false ratio is 40%. With Gaussian function fitting method, all the real targets is detected without false
出处 《光电工程》 CAS CSCD 北大核心 2004年第9期33-36,共4页 Opto-Electronic Engineering
关键词 目标探测 模板匹配 高斯函数拟合 最佳阈值 Target detection Template correlation Gaussian function fitting Best threshold
  • 相关文献

参考文献5

  • 1SHI J,TOMASI C.Good Features to Track [A].Proc.IEEE Computer Society Conf.Computer Vision and Pattern Recognition [C].Los Alamitos,CA,USA:IEEE,1994.593-600.
  • 2BARRON J,FLEET D,BEAUCHEMIN S.Performance of Optical Flow Techniques[J].International Journal of Computer Vision,1994,12(1):42-77.
  • 3BASCLE B,DERICHE R.Region Tracking Through Image Sequences [A].Proc.of the fifth Int.Conf.Computer Vision.Piscataway[C].Washington,DC,USA:IEEE,1995.302-307.
  • 4SENGUPTA D,ILTIS R A.Neural solution to the multitarget tracking data association problem [J].IEEE Trans.AES,1989,25(1):96-108.
  • 5魏波,郭旭平,曹旭阳,李在铭.图象目标的识别模型与检测技术[J].光电工程,1999,26(3):13-16. 被引量:2

二级参考文献1

  • 1杨宜禾,成像跟踪技术导论,1991年

共引文献1

同被引文献8

  • 1肖鑫,陶乐仁.预冷速率对冷冻干燥过程升华界面移动影响的实验研究[C].第五届全国低温生物医学及器械学术大会会议论文集.十堰:中国制冷学会第六专业委员会,2006:112-117.
  • 2Kochs M,Korber C H,Nunner B. The influence of the freezing process on vapour transport during sublimation in vacuumfreeze - drying. Int J. Heat Mass Transfer, 1991,34 (9) : 2395- 2408.
  • 3Sandall C O, King C J, Wilke C R. The relationship between transport properties and rate of freeze - drying of poultry meat.AICHE Journal, 1967,13:428 - 438.
  • 4Nastaj J F. Parabolic problem of moving boundary with relaxation of internal heat source capacity in vacuum freeze drying.Int. Comm. Heat Mass Transfer,2001,28(8) :1079 -1090.
  • 5Mascarenhas W J, Akay H U, Pikal M J. A computational model for finite element analysis of the freeze - drying process.Computer methods in applied mechanics and engineering,1997,148:105 - 124.
  • 6Kathy Steppe, Veerle Cnudde, Catherine Girard,et al. Use of X- ray computed microtomography for non - invasive determination of wood anatomical characteristics. Journal of Structural Biology,2004,148 : 11 -21.
  • 7Gerlinde Sehelenz, Engel J, Ruppreeht H. Sublimation during lyophilization detected by temperature profile and X - my technique. International Journal of Pharmaceutics,1995 ,113 :133 -140.
  • 8吴迪,彭晓峰.多孔介质内气液相变水分迁移的微CT分析.北京:中国工程热物理学会编.中国工程热物理学会传热传质学学术会议论文集.,2005.Ⅰ490—493.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部