期刊文献+

一种基于SVM的多目标模糊识别方法 被引量:2

A Multi-Target Fuzzy Recognition Method Based on Support Vector Machine
下载PDF
导出
摘要 支持矢量机是近年来在统计学习理论的基础上发展起来的一种新的模式识别方法 ,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。本文重点分析了支持矢量机多分类问题中存在的错分、拒分现象 ,提出了一种基于支持矢量机特征空间的模糊隶属度函数。多目标识别的仿真结果表明 ,采用这种模糊隶属度函数 ,能够减少目标的错分和拒分数量 ,提高识别率。 Support vector machine(SVM) is a new pattern recognition method developed in recent years on the foundation of statistical learning theory. It wins popularity due to many attractive features and emphatical performances in the fields of nonlinear and high dimensional pattern recognition. The misclassification and the rejective classification problems in multiclass support vector machine are analyzed,and a fuzzy membership function based on SVM feature space is proposed in this paper. Simulation results of multi-target recognition show that it can reduce the number of misclassification and rejective classification targets to use this kind of fuzzy membership function,and improve recognition rate consequently.
出处 《雷达科学与技术》 2004年第3期142-146,共5页 Radar Science and Technology
关键词 SVM 多目标模糊识别方法 支持矢量机 特征空间 模糊隶属度函数 support vector machine multi-target recognition feature space fuzzy membership function
  • 相关文献

参考文献1

二级参考文献2

  • 1Hu Yuhen,IEEE Signal Processing Magazine,1997年,11卷,39页
  • 2边肇祺,模式识别,1988年

共引文献40

同被引文献18

  • 1马君国,肖怀铁,李保国,朱江.基于局部围线积分双谱的空间目标识别算法[J].系统工程与电子技术,2005,27(8):1490-1493. 被引量:19
  • 2Chapelle O,Vapnik V,Bacsquest O,et al.Choosing Multiple Parameters for Support Vector Machines[J].Machine Learning,2002,46(1):131-159.
  • 3Sebald D J,Buchlew J A.Support Vector Machines and the Multiple Hypothesis Test Problem[J].IEEE Trans On Signal Processing,2001,11(49):2865-2872.
  • 4Casaent D,Wang Y C.Automatic Target Recognition Using New Support Vector Machine[C]//Proceeding of International Joint Conference on Neural Network Montreal.Canada:[s.n.],2005:1472-1475.
  • 5Xian Da Zhang,Yu Shi,Zheng Bao.A New Feature Vector Using Selected Bispectra for Signal Classification with Application in Radar Target Recognition[J].IEEE Trans on SP,2001,49(9):1875-1885.
  • 6Mike Bryant,Fred Garber.SVM Classifier Applied to the MSTAR Public Data Set[C]//Florida:SPIE,2005:355-360.
  • 7Qun Zhao,Jose Principe C-Support Vector Machines for SAR Automatic Target Recognition[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(2):643-654.
  • 8[1]V.Chandran,S.L.Elgar.Pattern Recognition Using Invariants Defined From Higher Order Spectra:One Dimensional Inputs[J].IEEE Trans.on S.P,1993,41(1):205-212.
  • 9[2]M.K.Tsatsanis,G.B.Giannakis.Object and Texture Classification Using Higher Order Statistics[J].IEEE Trans.on P.A.M.I,1992,14(7):733-750.
  • 10[3]J.M.Mendel.Tutorial on Higher-Order Statistics (Spectra) in Signal Processing and System Theory:Theoretical Results and Some Applications[C].Proceedings of the IEEE,1991,79(3):278-305.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部