期刊文献+

用双曲函数法求KdV-mKdV方程的钟状孤波解和激波状孤波解 被引量:5

Two Kinds of Solitary Wave Solutions to the KdV-mKdV Equation Obtained by Hyperbolic Function Method
下载PDF
导出
摘要 提出一种统一的求解非线性演化方程孤波解的双曲函数法 ,并利用这种方法求出了组合KdV mKdV方程的钟状孤波解和激波状孤波解 .作为特例 ,可以给出mKdV方程的两类孤波解 ,而且还给出了KdV方程的钟状孤波解 .双曲函数法是利用非线性波动方程孤波解的局部性特点 ,将方程的孤波解表示为双曲函数的多项式 ,从而将非线性波动方程的求解问题转化为非线性代数方程组的求解问题 .因此双曲函数法是一种简单而实用的方法 . A united hyperbolic function method to find the solita ry wave solutions to nonlinear evolution equations was proposed,and two kinds of solitary wave solutions to the combined KdV-mKdV equation were obtained by this method.As a special example,two kinds of solitary wave solutions to the mKdV equation can be obtained,and the bell-shaped solution to the KdV equation was also given.The proposed method is based on the fact that the solitary wave solutions are essentially of a localized nature.In this method,the solitary wave solutions to a nonlinear wave equation are denoted as the polynomials of hyperbolic functions,and the nonlinear wave equation is changed into nonlinear algebraic equations.So the hyperbolic function method is simple and effective when used to study the solitary wave solutions of the nonlinear evolution equation.
作者 朱燕娟
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第7期78-80,共3页 Journal of South China University of Technology(Natural Science Edition)
基金 广东省自然科学基金资助项目 (2 0 0 10 0 2 6 )
关键词 非线性演化方程 孤波解 双曲函数法 组合KdV—mKdV方程 nonlinear evolution equation solitary wave solution hyperbolic function method combined KdV-mKdV equation
  • 相关文献

参考文献8

  • 1Lan H B,Wang K L.Exact solutions for two nonlinear equations [ J].J Phys(A):Math Gen,1990,23:4097-4105.
  • 2Huang G X.Exact and explicit solitary wave solutions to a modle equation for water waves [J].Phys Lett (A),1989,139:373-374.
  • 3Heeman W.Exact solitary wave solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method [J].J Phys( A ):Math Gen,1986,19:607-628.
  • 4Malfliet W.Solitary wave solutions of nonlinear wave equations [ J ].Am J Phys,1992,60:650-654.
  • 5Wadati M.Wave propagation in nonlinear lattice [ J ].J Phys Soc Japan,1975,38:673-686.
  • 6Konno K.A modified KdV equation for ion acousics waves [ J ].J Phy Soc Japan,1974,37:1 631-1 636.
  • 7Narayanamurti V.Nonlinear propagation of heat pulses in solids [J].Phys Rev Lett,1970,25:1105-1 108.
  • 8Tappert F D.Asymptotic theory of self-trapping of heat pulses in solids [ J].Phys Rev Lett,1970,25:1 108-1111.

共引文献1

同被引文献60

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部