摘要
Trichoderma- based biofungicides are a reality in commercial agriculture, with more than 50 formulations registered worldwide as biopesticides or biofertilizers. Several research strategies have been applied to identify the main genes and compounds involved in the complex, three-way interactions between fungal antagonists, plants and microbial pathogens. Proteome and genome analyses have greatly enhanced our ability to conduct targeted and genome-based functional studies. We have obtained reproducible 2-D maps of the entire fungal proteome in various conditions of interaction, which permitted the isolation of many proteins related to specific functions. Many differential proteins from several biocontrol strains of Trichoderma spp. during the in vivo interaction with different plants and/or several phytopathogenic fungi have been isolated and analyzed by MALDI-TOF. Relevant genes have been cloned and specifically inactivated, to demonstrate their function in biocontrol and induction of disease resistance. GFP-based reporter systems with interaction-inducible promoters allowed the characterization of regulatory sequences activated by the presence of the pathogen or the plant. From extensive cDNA. and EST libraries of genes expressed during Trichoderma-pathogen-plant interactions, we are identified and determined the role of a variety of novel genes and gene-products, including ABC transporters specifically induced during antagonism with other microbes; enzymes and other proteins that produce or act as novel elicitors of Induced Resistance in plant and promote root growth and crop yield; proteins possibly responsible of a gene-for-gene avirulent interaction between Trichoderma and plants; mycoparasitism-related inducers released from fungal pathogens and that activate biocontrol in Trichoderma; fungal promoters specifically induced during mycoparasitism and plant colonization; plant proteins and a novel phytoalexin induced by the presence of the fungal antagonist; etc. We have also transgenically demonstrated the ability of Trichoderma to transfer heterologous proteins into plants during root colonization. Finally we have used GFP and other markers to monitor the interaction in vivo and in situ between Trichoderma and its host (s) (the fungal pathogen and the plant).
Trichoderma- based biofungicides are a reality in commercial agriculture, with more than 50 formulations registered worldwide as biopesticides or biofertilizers. Several research strategies have been applied to identify the main genes and compounds involved in the complex, three-way interactions between fungal antagonists, plants and microbial pathogens. Proteome and genome analyses have greatly enhanced our ability to conduct targeted and genome-based functional studies. We have obtained reproducible 2-D maps of the entire fungal proteome in various conditions of interaction, which permitted the isolation of many proteins related to specific functions. Many differential proteins from several biocontrol strains of Trichoderma spp. during the in vivo interaction with different plants and/or several phytopathogenic fungi have been isolated and analyzed by MALDI-TOF. Relevant genes have been cloned and specifically inactivated, to demonstrate their function in biocontrol and induction of disease resistance. GFP-based reporter systems with interaction-inducible promoters allowed the characterization of regulatory sequences activated by the presence of the pathogen or the plant. From extensive cDNA. and EST libraries of genes expressed during Trichoderma-pathogen-plant interactions, we are identified and determined the role of a variety of novel genes and gene-products, including ABC transporters specifically induced during antagonism with other microbes; enzymes and other proteins that produce or act as novel elicitors of Induced Resistance in plant and promote root growth and crop yield; proteins possibly responsible of a gene-for-gene avirulent interaction between Trichoderma and plants; mycoparasitism-related inducers released from fungal pathogens and that activate biocontrol in Trichoderma; fungal promoters specifically induced during mycoparasitism and plant colonization; plant proteins and a novel phytoalexin induced by the presence of the fungal antagonist; etc. We have also transgenically demonstrated the ability of Trichoderma to transfer heterologous proteins into plants during root colonization. Finally we have used GFP and other markers to monitor the interaction in vivo and in situ between Trichoderma and its host (s) (the fungal pathogen and the plant).
出处
《浙江大学学报(农业与生命科学版)》
CAS
CSCD
北大核心
2004年第4期387-387,共1页
Journal of Zhejiang University:Agriculture and Life Sciences
关键词
木霉素
相互作用机制
拮抗
真菌
无毒力
ISR
抗性
antagonistic fungi
mechanism of interaction
avirulence
ISR
systemic resistance
mycoparasitism