摘要
本文运用一典型的人工神经网络模型——“反向传播”模型的改进形式,研究了诱导效应指数I,摩尔折射度R_0,疏水亲脂参数lgP,以及分子联通性指数与气象色谱保留行为的关系,实现了对色谱保留值的预测。神经网络预测模型的最大相对误差不超过8.7%。结果表明,该方法性能良好,可望成为色谱保留值预测的有效手段。
Based on an improved back-propagation model which is one of the typical artificial neural network, the relationship among induced effect I, molar refractivity R , hydrophobic parameter lgp,as well as molecular connection and chromatographic retention behaviour,has been studied. And retention data for the investigated solutes are predicted. The maximum relative error doesn't exceed 8.7%. The results show that the performance of the neural network approach is good, and therefore it might be referred as an effective assistant technique for prediction of gas chromatographic retention values.
出处
《分析化学》
SCIE
EI
CAS
CSCD
北大核心
1993年第11期1250-1253,共4页
Chinese Journal of Analytical Chemistry
关键词
气相色谱
人工神经网络
保留值
Gas chroma tography, Aliphatic compounds,Artificial neural network, Back-propagation model.