期刊文献+

二重态下反应HCCO(~2A″)+O_2(~3∑_g^-)的势能面理论研究 被引量:1

Theoretical Study on the Doublet-State Potential Energy Surface of the Reactions between HCCO(~2A″) and O_2( ~3∑_g^-)
下载PDF
导出
摘要 选用cc pVDZ ,cc pVTZ基组用密度泛函方法 (B3LYP)研究了基态羰游基自由基HCCO( 2 A″)与基态氧分子O2 ( 3 ∑ -g)反应的机理 ,在B3LYP/cc pVDZ优化的几何构型基础上 ,使用CCSD(T) /cc pVDZ方法进行了单点能校正 .此外 ,还采用基于B3LYP/6 3 1G 几何构型及振动频率的G3B3理论对所有驻点进行了更精确的能量计算 .结果表明 ,只需越过 6 3 1kJ/mol或6 2 3kJ/mol的位垒 ,氧分子中的一个氧原子便很容易地与羰游基中紧邻氢原子的碳原子相结合得到两个总能较比反应物低 88 11kJ/mol或 84 85kJ/mol的开环中间体 ,此二开环中间体很容易发生C—C—O—O环合或C—O—O环合从而转化为更稳定的环式异构体 (总能较比反应物低 14 9 81kJ/mol和 5 4 97kJ/mol) ,转化位垒分别为 8 73kJ/mol和 86 44kJ/mol.该二环式异构体均很容易分解为反应的最终产物H +CO +CO2 .其它可能的通道也在本文中有所探讨 . Density functional (B3LYP) calculations, using the cc-pVDZ and cc-pVTZ basis sets, have been employed to study the reaction pathway involving ketyl radical (HCCO: 2A″) and oxygen molecule (O 2: 3∑ - g). Based on B3LYP/cc-pVDZ geometries, single point CCSD(T)/cc-pVDZ energy calculations have been performed to get more accurate energies. In addition, G3B3 theory with B3LYP/6-31G * geometries and frequencies has also been used for comparison. The obtained results show that the energy barriers are only 6.31 kJ/mol or 6.23 kJ/mol for the process of oxygen atom in O 2 attacking the terminal carbon of ketyl radical to form two open-ring intermediates, the total energies of which are 88.11 kJ/mol and 84.85 kJ/mol below the reactants, respectively. After that they could easily be converted to other two more stable annular isomers, the total energies of which are 149.81 kJ/mol and 54.97 kJ/mol below the reactants by cyclizing C—C—O—O or C—O—O with a barrier of 8.73 kJ/mol and 86.44 kJ/mol, respectively. Both of the annular isomers can easily be decomposed into the final products H+CO+CO 2. All other possible reaction channels are also reported.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2004年第15期1373-1378,FJ01,共7页 Acta Chimica Sinica
基金 国家自然科学基金 (No.2 0 0 730 0 6)资助项目
关键词 密度泛函 羰游基自由基 氧气 势能面 自由基反应 乙炔 氧化反应 二重态 ketyl radical, O 2, density function theory, radical reaction
  • 相关文献

参考文献18

  • 1Westbrook, C. K.; Dryer, F. L. Proc. Combust. Inst. 1981,18, 749.
  • 2Brezinsky, K. Prog. Energy Combust. Sci. 1986, 12, 1.
  • 3Homer, J. B.; Kistiakowsky, G. B. J. Chem. Phys. 1967,47, 5290.
  • 4Eberius, K. H.; Hoyermann, K.; Wagner, H. G. Proc. Combust. Inst. 1973, 14, 147.
  • 5Peeters, J. V.; Wagner, A. F. J. Phys. Chem. 1990, 94,2453.
  • 6Hoyermann, K. H.; Wagner, H. G.; Wolfrum, J. Z. Phys.Chem. 1969, 63, 193.
  • 7Klippenstein, S. J.; Miller, J. A.; Harding, L. B. Proc.Combust. Inst. 2003, 29,1209.
  • 8Peeters, J.; Schaekers, M.; Vinckier, C. J. Phys. Chem.1986, 90, 6552.
  • 9Temps, F.; Wagner, H. G.; Wolf, M. Z. Phys. Chem. 1992,176, 27.
  • 10Murray, K. K.; Unfried, K. G.; Glass, G. P.; Curl, R. F.Chem. Phys. Lett. 1992, 192, 512.

同被引文献14

  • 1王永成,戴国梁,耿志远,吕玲玲,王冬梅.乙烯自由基与臭氧反应的DFT计算研究[J].物理化学学报,2004,20(9):1071-1077. 被引量:3
  • 2刘朋军,常鹰飞,孙昊,苏忠民,王荣顺.HCCO与CH(~2Π)双自由基反应微观动力学的理论研究[J].高等学校化学学报,2005,26(4):723-726. 被引量:4
  • 3[2]Boullart W,Ngugen M T,Peeters J.Experimental investigation of the reaction between nitric oxide and ketenyl radicals (HCCO + NO):rate coefficient at T=290-670K and product distribution at 700K[J].J Phys Chem,1994,98(33):8036-8043.
  • 4[3]Peeters J,Boullart W,Devriendt K.CH (a4 -and/orX2Ⅱ) formation in the reaction between ketenyl radicals and oxygen atoms.determination of the CH-yield between 405 and 960K[J].J Phys Chem,1995,99(11):3583-3591.
  • 5[4]Rim K T,Hershberger J F.Product branching ratio of the HCCO + NO reaction[J].J Phys Chem A,2000,104(2):293-296.
  • 6[7]Ngugen M T,Boullart W,Peeters J.Theoretical characterization of the reaction between nitric oxide and ketenyl radicals (HCCO + NO):CO versus CO2 loss[J].J Phys Chem,1994,98(33):8030-8035.
  • 7[8]Irikurn K J.The ionization energy of CF3:when does entropy matter in gas-phase reactions?[J].J Am Chem Soc,1999,121(33):7689-7695.
  • 8[9]Bofill J M,Olivella S,Sole A,Anglada J M.The mechanism of methoxy radical oxidation by O2 in the gas phase.computational evidence for direct H atom transfer assisted by an intermolecular noncovalent O ·· O bonding interaction[J].J Am Chem Soc,1999,121(6):1337-1347.
  • 9[10]Mebel A M,Jockson W M,Chang A H,Lin S H.Photodissociation dynamics of propyne and allene:a view from ab initio calculations of the C3 Hn (n = 1-4) species and the isomerization mechanism for C3H2[J].J Am Chem Soc,1998,120(23):5751-5763.
  • 10李来才,王欣,田安民.O_3+NH→ONH+O_2反应机理的量子化学研究[J].化学学报,2000,58(9):1099-1102. 被引量:9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部