期刊文献+

Co_3O_4纳米棒的溶剂热合成及形成机理分析 被引量:5

Synthesis and Formation Mechanism of Co_3O_4 Nanorods by a Solvothermal Process
下载PDF
导出
摘要 以Co(NO3) 2 ·6H2 O为主要原料 ,H2 O2 为氧化剂 ,在油酸和正十二烷烃的混合溶液中 ,利用溶剂热技术于 160℃反应 10h ,成功地合成了Co3O4 纳米棒 .用X射线粉末衍射 (XRD)、透射电子显微镜 (TEM)和振动样品磁强计 (VSM)等手段对产物进行了表征 ,并对产物的形成机理进行了初步分析 .结果表明 ,产物为立方型Co3O4 纯相 ,优化实验条件可得到棒状Co3O4 ,其平均尺寸约为 2 5× 10 0nm .Co3O4 纳米棒的形成与微乳液的棒状结构有关 ,棒状结构的胶束是形成这种纳米棒的模板 .在室温下 ,产物的矫顽力 (Hc)为 3 5 3Oe ,剩余磁化率 (Mr)为 0 .4emu/g . Co 3O 4 nanorods have been synthesized at 160℃ for 10 h in the solution of oleic and n cetane by an emulsion solvothermal method using Co(NO 3) 2·6H 2O as starting materials. The as prepared product was characterized by X ray powder diffraction (XRD), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). The formation mechanism of the prepared product was analyzed based on formation of rod like micelles of oleic acid. Cobalt ions can migrate into the micelle core for the nucleation and growth of Co 3O 4. The results show that the as prepared Co 3O 4 nanorods are with the average size 25×100 nm and in the cubic phase. The magnetic susceptibility meets about linearly with the applied magnetic field at room temperature, and the coercivity ( Hc ) and remanent magnetization ( Ms ) values of the product at room temperature are 353 Oe and 0.4 emu/g, respectively. This simple route is also expanded to synthesize other materials with the rod like morphology.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2004年第4期481-484,共4页 化学物理学报(英文)
基金 ProjectsupportedbytheNationalNaturalScienceFoundationofChina (2 0 171001)andKeyTechnologiesResearchedProgramofAnhuiprovince (0 10 12 0 3 8)
关键词 溶剂热 合成 纳米棒 CO3O4 Solvothermal, Synthesis, Nanorod, Co 3O 4
  • 相关文献

参考文献23

  • 1Tanaka S, Fujii M, Kohiki S, Babasaki T, Deguchi H, Mitome M, Oku M. Nano Lett., 2001, 1: 379
  • 2黄金萍,杭国培.间接原子吸收光谱法测定四氧化三钴中的微量硅[J].光谱学与光谱分析,1999,19(3):421-423. 被引量:9
  • 3Xu Z P, Zeng H C. Chem.Mater., 2000, 12: 3459
  • 4Xu R, Zeng H C. J.Phys.Chem.B, 2003, 107: 926
  • 5Verelst M, Ely T O, Amiens C, Snoeck E, Lecante P, Mosset A, Respaud M, Broto J M, Chaudret B. Chem.Mater., 1999, 11: 2702
  • 6Ni Y, Ge X, Zhang Z, Liu H, Zhu Z, Ye Q. Mater.Res.Bull., 2001, 36: 2383
  • 7Hao Y, Teja A S. J.Mater.Res., 2003, 18: 415
  • 8Srivastava D N, Perkas N, Seisenbaeva G A, Koltypin Y, Kessler V G, Gedanken A. Ultrasonics Sonochem., 2003, 10: 1
  • 9Lee K, Seo W S, Park J. J.Am.Chem.Soc., 2003, 125: 3408
  • 10Odom T W, Huang J L, Kim P, Lieber C M. J.Phys.Chem.B, 2000, 104: 2794

二级参考文献6

  • 1余煜棉,莫胜钧.间接原子吸收光谱法对中药和食品中微量锗的测定[J].光谱学与光谱分析,1996,16(3):93-98. 被引量:15
  • 2[3]Xue Q J, Zhang Z Z, et al.Metal.J.Appl.Polymer.Sci., 1998, 69: 1393
  • 3[4]Li J H, et al.J.Mater.Sci., 1997, 32: 543
  • 4[5]Suganyma K, et al.J.Mater.Sci.Lett., 1989, 8: 808
  • 5孙汉文,原子吸收光谱分析技术,1992年,73页
  • 6周公度,无机结构化学,1982年,339页

共引文献8

同被引文献56

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部