期刊文献+

无单元法在高速公路沉降计算中的应用研究

Study on application of meshless method to settlement calculation of expressway
下载PDF
导出
摘要 无单元法是一种新型数值计算方法,它只需要节点相关信息就能建立离散模型。笔者首先介绍了不等阶多项式基的径向点插值法基本理论,接着将其应用到分级施工下的软基高速公路断面沉降计算中,推导出此类问题的系统矩阵方程,并与有限元法解进行了分析对比。结果表明:该法不但计算精度高,而且在求解路堤分级施工的这类移动边界问题的沉降时,比有限元法更方便,故在工程实践中将具有广阔的应用前景。 Meshless method is a new type numerical calculation method, which can use only a set of nodes to formulate the discrete model. After the basic theory of radial point interpolation method with unequal polynomial basis (URPIM) is introduced, and then URPIM is applied to calculate the settlement and deformation of expressway subjected to multi-stage loadings on soft ground. Furthermore, the system stiffen equation of this problem is developed and the results are also compared with those of finite element method. It is found that the URPIM is more accurate and more convenient to handle the moving boundary problem as embankment constructed by stages. This method will has wide application foreground in engineering.
出处 《岩土力学》 EI CAS CSCD 北大核心 2004年第9期1437-1441,共5页 Rock and Soil Mechanics
关键词 不等阶多项式基的径向点插值法 高速公路 沉降 有限元法 Calculations Deformation Finite element method Highway engineering Interpolation
  • 相关文献

参考文献13

  • 1Nayroles B, ouzot G. Generalizing the finite element method: diffuse approximation and diffuse elements[J].Computational Mechanics, 1992, 10: 307-318.
  • 2Belytschko T, Lu Y Y. Element Free Galerkin Method[J].International Journal for Numerical Method in Engineering, 1994, 37: 229- 256.
  • 3LU Y Y, Belytschko T, Gu L. An implementation of the element-free Galerkin method [J]. Computer Methods in Applied Mechanics and Engineering, 1994, 13: 397-414.
  • 4LIU W K, Jun S. Reproducing kernel particle methods[J].International Journal for Numerical Methods in Fluids, 1995, 20: 1081-1 106.
  • 5Duarte C A, Oden J T. HP-clouds: An h-p meshless method[J]. Numerical methods for partial differential equations. 1996(12): 673 - 705.
  • 6LIU G R, Gu Y T. A point interpolation method for two-dimensional solid[J]. International Journal for Numerical Method in Engineering, 2001, 50: 937- 951.
  • 7WANG J G, LIU G R. A point interpolation method for simulating dissipation process of consolidation[J].Computer Methods in Applied Mechanics and Engineering, 2001, 190:5 907 - 5 922.
  • 8WANG Jiang-guo, LIU G R. Numerical analysis of Biot's consolidation process by radial point interpolation method [J]. International Journal of Solids & Structures, 2002,39: 1557-1 573.
  • 9Hardy R L. Theory and applications of the multi-quadrics Bi-harmonic method [J]. Computers and Mathematics with Applications, 1990, 19: 163-208.
  • 10WANG JG, LIU G R. On the optimal shape parameters of radial basis functions used for 2-D meshless methods.Computer Methods in Applied Mechanics and Engineerings, 2002(191): 2 611-2 630.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部