期刊文献+

基于人工神经网络的叶脉信息提取——植物活体机器识别研究Ⅰ 被引量:40

Extraction of Leaf Vein Features Based on Artificial Neural Network— Studies on the Living Plant Identification Ⅰ
下载PDF
导出
摘要 叶片的识别是识别植物的重要组成部分,特别在野外识别植物活体尤其重要。叶脉的脉序是植物的内在特征,包含有重要的遗传信息。但由于叶脉本身的多样性,利用单一特征的图像处理方法难以有效地提取叶脉。为了充分利用图像的信息,本文提出了一种基于人工神经网络的叶脉提取方法。该方法利用边缘梯度、局部对比度和邻域统计特征等10个参数来描述像素的邻域特征,并将其作为神经网络的输入层。实验结果表明,与传统方法相比,经过训练的神经网络能够更准确地提取叶脉图像,为进一步的叶片识别打下了良好的基础。 Leaf recognition is an important step for plant computerized identification, especially for fieldliving plants. Previous researches were mainly focused on leaf recognition by utilizing the peripheralcontour of the leaf while ignoring the leaf venation that actually contains important genetic information.Conventional thresholding-based methods cannot extract the information accurately due to high diversityof leaf veins. In this paper, an approach based on artificial neural network learning is proposed to extractleaf venation. Ten features including edge gradients, local contrast and statistical features are extractedfrom a window centered at the image pixel and used to train a neural network classifier. Compared withconventional thresholding-based methods, the trained neural network is capable of extracting more accu-rate modality of leaf venation for subsequent leaf recognition.
出处 《植物学通报》 CSCD 北大核心 2004年第4期429-436,共8页 Chinese Bulletin of Botany
关键词 人工神经网络 叶脉 图像 植物识别系统 局部对比度 植物活体 Vein extraction, Artificial neural networks, Plant identification, Local contrast
  • 相关文献

参考文献11

  • 1Ash A W, Ellis B, Hickey L J, Johnson K R, Will P, Wing S L, 1999. Manual of Leaf Architecture: Morphological Description and Categorization of Dicotyledonous and Net-Veined Monocotyledonous Angiosperms. Washington D C: Smithsonian Institution, 26~27
  • 2Buyck B, 1999. Taxonomists are an endangered species in Europe. Nature, 401:321
  • 3Chi Z, Yan H, Pham T, 1996. Fuzzy Algorithms: with Applications to Image Processing and Pattern Recognition.Singapore: World Scientific Publishing, 189-212
  • 4Gouveia F, Filipe V, Reis M, Couto C, Bulas-Cruz j, 1997. Biometry: the characterization of chestnut-tree leaves using computer vision. In: Couto C A, Begun Reds. Proceedings of the IEEE International Symposium on Industrial Electronics. Guimaraes-Portuga
  • 5Hickey L J, 1971. Leaf architectural classification of the angiosperms (abstraction). Amer J Bot, 58:469
  • 6Hickey L J, Taylor D W, 1991. The leaf architecture of Ticodendron and the application of foliar characters in discerning its relationships. Ann Missouri Bot Gard, 78:105-130
  • 7Moiler M F, 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6:525-533
  • 8Soille P, 2000. Morphological image analysis applied to crop field mapping. Image Vision Comput, 18:1025-1032
  • 9Wang Z, Chi Z, Feng D, Wang Q, 2000. Leaf image retrieval with shape features. Lecture Notes in Computer Science 1929. In: Laurini R ed. Advances in Visual Information Systems. Berlin: Springer-Verlag, 477-487
  • 10高维衡.制作叶脉标本[J].生物学通报,1994,29(5):29-29.

共引文献221

同被引文献354

引证文献40

二级引证文献289

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部