期刊文献+

用改进的密度泛函理论预测三元硬球混合物的结构 被引量:1

Structures of Ternary Hard-Sphere Fluids Predicted by an Improved Density Functional Theory
下载PDF
导出
摘要 在Ronsenfeld的权重函数的基础上,在计算流体自由能密度时利用硬球混合物流体的Boublik-Mansoori- Canahan-Starling-Leland状态方程来代替硬球的定标粒子理论,从而得到了改进的密度泛函理论。结合测试粒子法,对不同组成的三元硬球混合物流体的径向分布函数进行了计算;与分子模拟数据比较结果表明,使用合适的密度泛函理论,测试粒子法能够成功地计算多元硬球混合物流体的结构性质。 本研究为使用统计力学理论计算其它复杂流体的热力学性质提供了一种方法。 Based on the weight functions of Ronsenfeld, an improved density functional theory was obtained by using the excess Helmholtz energy density from the Boublik-Mansoori-Canahan-Starling-Leland equation of state instead of that from the scaled particle theory. The obtained density functional theory was used to predict the radial distribution functions through the test-particle method for ternary hard-sphere mixtures with different diameters at various compositions. The calculated radial distribution functions are in excellent agreement with the computer simulation data available. The calculated results show that the test-particle method can be successfully used to predict the structure properties when the accurate density functional theory is adopted. The present work provides a method for investigating structural and thermodynamic properties of complex fluids by using the statistical mechanic theories. As an example, the molar volumes for the ternary system Ar+N2+CH4 were predicted by the Barker-Henderson perturbation theory using the radial distribution functions for hard sphere mixtures. The results were compared with the experimental values and good agreement was achieved.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2004年第4期524-528,共5页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金资助项目(20376037)资助。
关键词 基本度量理论(FMT) 硬球混合物 径向分布函数 测试粒子法 Computer simulation Probability density function Radial basis function networks Thermodynamic properties
  • 相关文献

参考文献16

  • 1梁志鹏,赵小明,刘志刚,赵冠春.应用WCA微扰理论推算非极性液体比热容的新方法[J].高校化学工程学报,1995,9(2):111-117. 被引量:1
  • 2吴建中,陆九芳,李以圭.用微扰理论研究链状流体的状态方程[J].高校化学工程学报,1995,9(1):1-8. 被引量:1
  • 3Reiss H, Frisch H L, Lebowitz J L. Statistical mechanics of rigid spheres [J]. J Chem Phys, 1959, 31(2): 369-380.
  • 4Lebowitz J L, Rowlinson J S. Thermodynamic properties of mixtures of hard spheres [J]. J Chem Phys, 1965, 41(1): 133-138.
  • 5Patra C N, Ghosh S K. Density functional approach to the structure of uniform fluids [J]. J Chem Phys, 1997, 106(7): 2762-2770.
  • 6Denton A R, Ashcroft N W. Modified weighted-density-functional theory of nonuniform classical liquids [J]. Phys Rev A, 1989,39(9): 4701-4708.
  • 7Denton A R, Ashcroft N W. Weighted-density-functional theory of nonuniform fluid mixtures: application to the structure of binary hard-sphere mixtures near a hard wall [J]. Phys Rev A, 1991, 44(12): 8242-8248.
  • 8Yu Y-X , Wu J Z. Structures of hard-sphere fluids from a modified fundamental- measure theory [J]. J Chem Phys, 2002,117(22): 10156-10164.
  • 9Evans R. Fundamentals of Inhomogeneous Fluids [M]. New York: Marcel Dekker, 1992.
  • 10Rosenfeld Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing [J].Phys Rev Lett, 1989, 63(9): 980-983.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部