期刊文献+

常减压蒸馏装置双模型结构RBF神经网络建模及其应用 被引量:9

Development of RBF neural network with double model structure and its application to atmospheric and vacuum distillation units
下载PDF
导出
摘要 文中提出双模型结构RBF(RadialBasisFunction)神经网络 ,结合工艺机理和相关分析法 ,筛选出影响较大的变量。对现场数据 ,用小波分析法 ,剔除噪声和故障数据 ,考虑各输入信号对软仪表影响时间的区别 ,分别采用不同的滞后时间 ,建立了常减压蒸馏装置质量软仪表模型 ,取得较好的结果。 A RBF neural network with a double model structure was proposed. Combining the mechanism of a process with a correlation analysis, the important variables were selected. The defect and the high level noise in signals of the field site were eliminated by using the wavelet analysis method. The time difference of the various multiple input variables acting on the software instrument were considered and the difference delay time was used. Through applying the RBF neural networks to the atmospheric and vacuum distillation units, a good estimation of the production quality was showed in this paper.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 2004年第4期91-94,共4页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 中国石油克拉玛依石化分公司 (H981 1 0 )
关键词 RBF神经网络 软仪表 常减压蒸馏 双模型结构 滞后时间 RBF neural network software instrument atmospheric and vacuum distillation double model structure delay time
  • 相关文献

参考文献3

  • 1Chen S, Billing S A, Cowan C F N. Practical identification of NARMAX models using radial basis functions[J] .INT J Control, 1990, 52(6): 1327 - 1350
  • 2Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithm for radial basis function networks [ J ]. IEEE Transactions on Neural Networks,1991,2(2) :302- 309
  • 3王永骥 涂健.神经元网络控制[M].北京:机械工业出版社,1997..

共引文献8

同被引文献136

引证文献9

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部