摘要
考虑了在区域极点约束下状态反馈的鲁棒H2控制问题.分别对含多面体不确定性的连续和离散系统进行了讨论.基于LMI,给出了存在参数相关的Lyapunov矩阵的充分条件.利用LMI凸优化方法的解,所得静态反馈控制器,不仅保证闭环系统的极点在一给定区域内,而且还使性能指标H2的一上界达到最小.
The problem of static state feedback robust H2 control with regional stability constraints for the closed-loop system is considered. Both continuous and discrete-time systems with polytopic uncertainty are investigated. A new LMI-based sufficient condition for the existence of parameter-dependent Lyapunov functions is proposed. Static state feedback controllers required are not only guaranteed to satisfy all closed-loop poles to stay inside a specified region for all admissible parameter uncertainties, but also provide an upper bound for the H2 cost function, which is minimized using LMI convex optimization approach.
出处
《自动化学报》
EI
CSCD
北大核心
2004年第3期321-329,共9页
Acta Automatica Sinica
基金
Supported by National Natural Science Foundation of P. R. China(60174027)
关键词
多面体不确定性
鲁棒控制
区域稳定性
矩阵不等式
优化
Closed loop control systems
Control system analysis
Feedback control
Lyapunov methods
Matrix algebra
Optimization
Uncertain systems