期刊文献+

并联机器人奇异位形分析的几何方法(英文) 被引量:2

A Geometric Method of Singularity Analysis for Parallel Robots
下载PDF
导出
摘要 采用微分几何方法,提出一种针对一般并联机器人的奇异性的分类方法.依据奇异流形与奇异运动方向的关系,将奇异性进一步区分为一阶奇异性和二阶奇异性,基于二阶奇异点分布的连续性属性将其中的二阶奇异性进一步分为退化和非退化奇异性,并对退化奇异性的物理含义进行了分析,指出退化奇异给机构带来的危险性.最后针对冗余驱动的平面二自由度并联机构进行了分析. Using the language of differential geometry, this paper provides a fine classification of singularities of general parallel robots. Based on the relations between singularity manifolds and singularity distributions, these singularities are further subclassified into first-order singularities and second-order ones. Furthermore, the second-order singularities can be distinguished as degen-erate or nondegenerate singularities by whether they form continuous curves on configuration manifolds. This paper also gives an insight into the degenerate singularities, which can sometimes be a source of danger not only to the mechanism itself but also to workers to operate the mechanism. Finally, a planar two degrees-of-freedom mechanism with one redundant actuator is given to illu-minate the method.
出处 《自动化学报》 EI CSCD 北大核心 2004年第3期330-336,共7页 Acta Automatica Sinica
基金 Supported by National Netural Science Foundation of P. R. China(50029501)
关键词 并联机器人 奇异点 微分几何 分布 Parallel robots, singularity, differential geometry, distribution
  • 相关文献

参考文献6

  • 1Richard M, Li Z X, Sastry S S. A Mathematical Introduction to Robotic Manipulation. Florida: CRC Press, 1994
  • 2Gosselin C, Angeles J. Singularity analysis of closed loop kinematic chains. IEEE Transactions on Robotics and Automation, 1990, 6(2): 281-290
  • 3Park F C, Kim J W. Manipulability and singularity analysis of multiple robot systems: A geometric approach. In:Processings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgium, 1998
  • 4Merlet J P. Singular configuration of parallel manipulators and grassman geometry. International Journal of Robot Research, 1989, 8(5): 45-56
  • 5Kieffer J. Differential analysis of bifurcations and isolated singularities for robots and mechanisms. IEEE Transactions on Robotics and Automation, 1994,10(1): 1- 10
  • 6Boothby W M. An Introduction to Differentiable Manifolds and Riemannian Geometry. London: Academic Press,1986

共引文献1

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部