期刊文献+

基于粒子群优化的积单元网络预测混沌序列

Predicting Chaotic Time Series Using a Product Unit Network Based on PSO
下载PDF
导出
摘要 提出一种基于粒子群优化 (PSO)的积单元神经网络 (PU NN )预测混沌时间序列的方法 .PUNN信息存储能力强 ,但是它的训练却很困难 .PSO是一类基于群智能的随机全局优化技术 ,故该文用 PSO算法训练 PUNN.对 Mackey-Glass混沌序列分别用 PU NN和模糊神经网络方法做的单步及多步预测对比实验结果说明不仅用 PSO算法训练PUNN是有效的 ,而且用 PU NN预测混沌时间序列是一种有效的方法 . A new method of predicting chaotic time series using a product unit neural network (PUNN), which is trained by a particle swarm optimizer (PSO) is proposed in this work. PUNNs have power information storage capacity, but the usual optimization algorithms like gradient descent cannot train the PUNNs efficiently. PSO is a population based stochastic global optimization technique, so PUNNs are trained by a PSO in this paper. The application considered is Mackey-Glass chaotic time series. Experiment results for single step and multi step prediction are obtained both from PUNN and fuzzy neural networks methods. The work not only demonstrates that PSO is efficient for training PUNNs, but it also highlights the advantages of the proposed method.
作者 李爱国 覃征
出处 《小型微型计算机系统》 CSCD 北大核心 2004年第6期972-974,共3页 Journal of Chinese Computer Systems
基金 陕西省科学技术发展计划 "十五 "攻关 ( 2 0 0 0 K0 8-G12 )资助
关键词 积单元 神经网络 粒子群优化 混沌时同序列 预测 预报 product unit neural networks particle swarm optimization chaotic time series prediction forecast
  • 相关文献

参考文献8

  • 1Iulian B. Ciocoiu. Time series analysis using RBF networks with FIR/IIR synapses[J]. Neurocomputing, 1998, 20: 57-66.
  • 2Maguire L P, Roche B, McGinnity T M, L J McDaid. Predicting a chaotic time series using a fuzzy neural network[J]. Information Sciences, 1998, 112: 125-136.
  • 3Durbin R, Rumelhart D. Product units: a computationally powerful and biologically plausible extension to backpropagation networks[J]. Neural Computation, 1989, 1: 133-142.
  • 4Kennedy J, Eberhart R. Particle swarm optimization[C]. IEEE Int'l Conf. on Neural Networks, Perth, Australia, 1995, 4: 1942-1948.
  • 5Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]. Proc. of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995, 39-43.
  • 6Shi Y, Eberhart R. A modified particle swarm optimizer[C]. IEEE World Congress on Computational Intelligence, 1998:69-73.
  • 7Clerc M, Kennedy J. The particle swarm - explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Trans. on Evolutionary Computation, 2002, 6(1): 58-73.
  • 8张志华,郑南宁,郑海兵.径向基函数(RBF)神经网络的一种极大熵学习算法[J].计算机学报,2001,24(5):474-479. 被引量:14

二级参考文献2

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部