期刊文献+

改进的RBF网络及其参数优化方法 被引量:7

An Improved RBF Neural Network and Parameter Optimization Method
下载PDF
导出
摘要 该文提出了一个改进的RBF网络及其参数优化方法。将典型的三层RBF网络改为一个两层RBF和一个单层感知器的串联网络。参数优化方法自动确定核函数个数,并根据核函数输出误差用BP算法修正核函数中心和宽度。根据样本分布的不规则性,引入了子类的概念,使每个类由若干子类覆盖,每个类生成一个单独的网络。实验表明,这种方法能得到较优的网络结构及其参数,并且提高了RBF网络中BP算法的收敛速度。 This paper promotes an improved RBF network and the method of its parameters optimization.The general three -layer RBF network is divided into two parts:a two -layer RBF and a single -layer perceptron(SLP).In the parameters optimization method the number of basis functions is decided automatically,and the centers and width are trained by BP algorithm based on the output of basis function.As the samples usually distributes irregularly,authors use the conception called subclass,let every class be represented by several subclasses and generate an improved RBF network.Using the iris set and letter recognition set,the method gets a quite good neural network structure and parameters,and the converge of BP algorithm is speeded up.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第18期95-98,共4页 Computer Engineering and Applications
关键词 RBF网络 BP算法 核函数 单层感知器(SIP) 子类 RBF neural network,BP algorithm,basis function,single-layer perceptron,subclass
  • 相关文献

参考文献12

  • 1Gao Daqi,Wushouyi.An optimization method for the topological structures of feed-forward multi-layer neural networks[J].Pattem Recognition,1998 ;31 (9):1337~1342
  • 2Gao Daqi,Yanggenxing.Basic Principles of Pattern Classification Methods Based on Improved RBF Neural Networks[J].Journal of East China University of Science and Technology,2001 ;27(6):677~683
  • 3Karayiannis N B,Mi G W.Growing radial basis neural networks:merging supervised and unsupervised learning with network growth teehnique[J].IEEE Transactions on Neural Networks,1997;8(6):1492~1560
  • 4Roy A,Govil S,Miranda P.An algorithm to generate radial basis function(RBF)-like nets for classification problem[J].Neural Networks,1995 ;8(2):179~201
  • 5Karayusnnis 1N B.Reformulated radial basis neural networks trained by gradient descent[J].IEEE Trans on Neural Networks,1999; 10(3 ):657~671
  • 6Murphy P M,Aha P.The UCI repository of machine learning databases and domain theories.http://www.ics.uci.edu/~mlearn,1995
  • 7Friedhelm Schwenker,Hans A Keatler,Gunther Palm.Three learning phases for radial-basis-function networks[J].Neural Networks,2001; 14:439~458
  • 8Musavi M T,Ahmed W,Chan K H et al.On the training of radial basis function classifier[J].Neural Networks,1992; 5(2 ):595 ~603
  • 9Zhu Q,Cai Y,Liu LA global learning algorithm for a RBF network[J].Neural Networks,1999; 12(2):527~540
  • 10Uykan Z,Guzelis C,Celebi E et al.Analysis of input-output clustering for determining centers of RBFN[J].IEEE transactions on Neural Networks,2000; 11 (4):851~857

同被引文献65

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部