期刊文献+

基于信息熵的IP网端到端行为分析与建模 被引量:2

Analysis and Modeling of End-to-End Behavior Based on Information Entropy in IP Network
下载PDF
导出
摘要 具有开放、分布式、不协作、异构、无中心控制等特点的Internet复杂巨系统的管理、容量规划、新一代网络体系结构设计与分析和性能预测都离不开对网络行为的充分理解。而端到端行为作为网络行为的一个重要组成部分,具有一定的研究价值。该文利用信息熵原理建立用于分析端到端整体宏观行为的信息熵模型,该模型能很好地反映端到端整体宏观行为与链路上各节点的状态概率之间关系,根据该模型可以分析端到端链路上各节点之间的相互作用关系以及它们是如何引起端到端整体宏观行为的。最后,给出了该模型的有效性和稳定性定量分析的判别式。 Internet has become a complex gigantic system that has open,distributed,uncooperative,heterogeneous,non-center-control characteristics.To manage and scheme Internet,and design new generation network architecture and anal-yse and performance forecast is need to perceive network behavior.End-to-end behavior is an important part of network behavior,and it is worthy of research.This paper establishes an information entropy model about end-to-end behavior that is used to analyse end-to-end macro-behavior.End-to-end behavior is connected with status probability of nodes on the links.By this model,it is easy to analyse the interaction between parts of nodes on the links and how to give rise to end-to-end behavior.At last,this paper offers some formulas to verify the availability and stability of this model.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第18期15-18,28,共5页 Computer Engineering and Applications
基金 国家自然科学基金项目(编号:10375024) 湖南省自然科学基金项目(编号:03JJY4054) 湖南省自然科学基金项目(编号:02JJY2097)
关键词 网络宏观行为 端到端行为 信息熵 状态概率 network macro-behavior,end-to-end behavior,information entropy,status probability
  • 相关文献

参考文献15

  • 1Coates A O,Hero Ⅲ,R Nowak.Intemet Tomography[J].IEEE Signal Processing Magazine,2002; 19(3):47~65
  • 2V Paxson,S Floyd.Wide-Area Traffic:The Failure of Poisson Modeling[J].IEEE/ACM Transaction on Networking,1995; 3 (3):266~244
  • 3J Beran,R Sherman,M S Taqqu et al.Long-Range dependence in variable bit rate traffic[J].IEEE Transactions on communications,1995 ;43 (2/3/4):1566~1579
  • 4W Leland,M Taqqu.On the self-similar nature of Ethernet traffic [J].IEEE/ACM Transaction on Networking,1994; 2:1~15
  • 5W Willinger,V Paxson,M Taqqu.seff-Similarity and Heavy Tails:Structural Modeling of Network Traffic[M].A Practical Guide to Heavy Tails :Statistical Techniques and Applications,1998:27~53
  • 6Jianbo Gao,Izhak Rubin.Multifractal Modeling of Counting Processes of Long-Range Dependent Network Traffic[C].In :Proceeding SCS Advanced Simulation Technologies Conference,San Diego,CA,1999-04:12~15
  • 7A Veres,M Boda.The chaotic nature of tcp congestion control[C].In:Proceedings of INFOCOM 2000,2000-03
  • 8William Stallings.High-Speed Networks and Internets :Performance and Quality of Services[M].Second Edition.Publishing House of Electronics Industry,2003 :144~148
  • 9CAIDA:Cooperative Association for Internet Data Analysis[R].For more information see http://www.caida.org/
  • 10Anja Feldmann,Anna C Gilbert,Polly Huang et al.Dynamics of IP traffic:A study of the role of variability and the impact of control [C].In:Proceedings of the ACM/SIGCOMM'99

共引文献1

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部