期刊文献+

基于数据挖掘技术的电力系统暂态稳定预测 被引量:5

Power system transient stability prediction based on data mining
下载PDF
导出
摘要 提出了相量测量装置历史数据挖掘方案,以暂态稳定监测为例,建立了一套数据挖掘流程。利用各种数据源建立了暂态稳定监测数据集市,该集市不仅便于联机分析处理,同时还可利用其建立多种数据挖掘模型,获取更多的暂态稳定知识。在6机22节点系统中的应用结果证明了该方法对电力系统暂态稳定监测的有效性。 This paper presents a data mining framework for the historical data of PMUs. Taking example for transient stability monitor, this paper establishes a data mining flow. The data market of transient stability monitor is built up by all kinds of data sources. The data market is convenient for online analytical processing. The test system that includes 6 machines and 22 nodes is employed to demonstrate the validity of the proposed approach. <
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2004年第4期1-4,共4页 Journal of North China Electric Power University:Natural Science Edition
基金 电力行业青年促进费资助项目(SPQJKJ-02-09) 华北电力大学青年博士教师基金资助项目.
关键词 电力系统 暂态稳定预测 数据挖掘 数据源 神经网络 数据集市 data mining market Phasor Measurement Units PMUs) online analytical processing (
  • 相关文献

参考文献6

  • 1[1]Liu C W, Su MC, Tsay S S, et al. Application of a novel fuzzy neural network to real-time transient stability swings prediction oased on synchronized phasor measurements [J].IEEE Trans. on Power Systems, 1999,14 (2): 685-692.
  • 2[2]IEEE Std 1344-1995 (R2001). IEEE standard for synchrophasors for power systems [S]. 2001.
  • 3[3]Burnett R O, Butts M M, Cease T W, et al. Synchronized phasor measurements of a power system event [J]. IEEE Trans. on Power Systems, 1994,9 (3): 1643-1650.
  • 4[4]Vapnik V. The nature of statistical learning theory [M]. New York: Springer-Verlag, 1995.
  • 5[5]Kim H C, Pang S N, Je H M, et al. Pattern classification using support vector machine ensemble [C]. 16th International Conference on Pattern Recognition, 2002.160-163.
  • 6[6]Jiawei H,Micheline K. Data mining:concepts and techniques[M]. Simon Fraser University: Morgan Kaufmann Publishers, 2000.

同被引文献60

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部