期刊文献+

亚流域划分对分布式水文模型模拟结果的影响 被引量:36

Influence of subdivision of watershed on distributed hydrological model
下载PDF
导出
摘要 本文以GIS技术为支持,选择黄河下游支流洛河卢氏水文站以上流域为研究区域,应用分布式水文模型SWAT(SoilandWaterAssessmentTool)在不同的亚流域划分数量条件下进行流域产流和产沙模拟,进而分析亚流域划分对分布式水文模型模拟结果的影响,结果表明:(1)产流量随亚流域数量的增加而增大,变化幅度较小;产沙量随亚流域数量的增加而减小,变化幅度较大;(2)存在一个亚流域划分水平,当超过此水平时亚流域数量的变化对产流量和产沙量几乎没有影响。根据计算流域产沙量的MUSLE方程,分析了由于亚流域划分数量变化对流域产沙的影响,发现在研究区内其主要原因为MUSLE中径流项对亚流域划分数量变化的响应,其次是土壤可蚀性因子、植被覆盖和管理因子和地形因子参数值的统计变化。 The distributed hydrological model-SWAT (Soil and Water Assessment Tool) is applied to analyze the influence of different watershed subdivisions on runoff yield and sediment yield. The result shows that: 1.the runoff yield will increase with the increase of subdivision amount and varies within a small range, but the sediment yield will decrease and varies significantly; 2.a critical subdivision level exists, the subdivision will not affect the runoff and sediment yield if the amount of subdivision exceeds this level. Furthermore, the influence of subdivision level, i.e. the spatial aggregation extent, on sediment yield is investigated by using the MUSLE (Modified Universal Soil Loss Equation). It is found that the term expressing the runoff in the equation is sensitively responding to the subdivision amount in the study area.
出处 《水利学报》 EI CSCD 北大核心 2004年第7期119-123,128,共6页 Journal of Hydraulic Engineering
基金 国家重点基础研究发展规划(973)项目(G1999043605) 教育部博士点基金资助项目(20010027013)
关键词 空间集总 分布式水文模型 亚流域 产流 产沙 parameter spatial aggregation distributed hydrological model subdivision of watershed SWAT model runoff yield sediment yield
  • 相关文献

参考文献12

  • 1[1]Fitz Hugh T W,Mackayb D S.Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model[J].Journal of Hydrology,2000,236:35-53.
  • 2[2]Arnold J G,et al.Large area hydrologic modeling and assessment-Part Ⅰ: model development[J].Journal of the American Water Resources Association, 1998, 34(1):73-89.
  • 3[3]Wood E F,et al. Effects of spatial variability and scale with implications to hydrologic modeling[J]. Journal of Hydrology, 1988, 102:29-47.
  • 4[4]Manillapalli S,et al.Effect of spatial variability on basin scale modeling[A]. Third International Conference/Workshop on Integrating GIS and Environmental Modeling[C].Proceedings, Santa Fe, New Mexico, 1996.
  • 5[5]Bingner R L,et al.Effect of watershed subdivision on simulation runoff and fine sediment yield[J]. Transactions of the ASAE, 1997, 40 (5): 1329-1335.
  • 6[6]USDA-SCS. National Engineering Handbook, hydrology Section 4, chap. 4-10[M]. US Dept. of Agriculture, Soil Conservation Service, Washington, DC, USA, 1972.
  • 7[7]Singh V P, McCann R C. Some noted of Muskingum method of flood routing[J]. Journal of Hydrology, 1980, 48: 343-361.
  • 8[8]Douglas D H. Experiments to locate ridges and channels to create a new type of digital elevation models[J].Cartographica, 1986, 23(4):29-61.
  • 9[9]Fairfield J, Leymarie P. Drainage networks from grid digital elevation models[J]. Water Resources Research, 1991,30(6):1681-1692.
  • 10[10]Mark D M. Automatic detection of drainage networks from digital elevation models[J]. Cartographica, 1984,21(2/3):168-178.

同被引文献660

引证文献36

二级引证文献607

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部