期刊文献+

自适应局部线性化法预测混沌时间序列 被引量:9

Adaptive Local Linear Predicting Chaotic Time Series
原文传递
导出
摘要  提出一种基于奇异值分解最小二乘法的自适应局部线性化预测方法.它要求数据矩阵的条件数不大于给定阈值,并据此自适应地确定当前相空间的维数,然后根据新的嵌入维数重构数据矩阵,进行模型的参数估计和计算当前预测值.实验结果说明所提方法精度高且稳健.特别是当嵌入维数接近最邻近向量的数目时,其性能显著优于普通局部线性化方法. Local linear is a well-known method for prediction chaotic time series. there are two shortages: Robustness of the method is poor; it is difficult to determine the embedding dimensions. An adaptive local linear method is proposed, which based on singular value decomposition. The method can determine the crisp embedding dimension adaptively according to singular values of data matrixes, then the new data matrixes are reconstructed, and the parameters of the models are estimated, finally, crisp prediction value is estimated. Noisy Lorenz time series and stock price movements time series are employed to compare proposed approach with original local linear method respectively. Experimental results show that proposed approach is robust, and possessed higher prediction precision than that of original local linear, especially in situations where the selected embedding dimension is close to the number of the nearest neighbors.
作者 李爱国 覃征
出处 《系统工程理论与实践》 EI CSCD 北大核心 2004年第6期67-71,共5页 Systems Engineering-Theory & Practice
基金 陕西省科学技术发展计划"十五"攻关资助(2000K08-G12)
关键词 混沌时间序列 局部线性化 预测 预报 奇异值分解 chaotic time series local linear prediction, forecast singular value decomposition
  • 相关文献

参考文献9

  • 1[1]Farmer J D, Sidorowich J J. Predicting chaotic time series [J]. Phys Rev Lett, 1987,59: 845-848.
  • 2[2]Jayawardena A W, Li W K, Xu P. Neighbourhood selection for local modelling and prediction of hydrological time series[J]. Journal of Hydrology, 2002, 258: 40-57.
  • 3[3]Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic time series - the role of the time window length[J]. Physica D, 1996, 95: 13-28.
  • 4[4]Reick C H, Page B. Time series prediction by multivariate next neighbor methods with application to zooplankton forecasts[J]. Mathematics and Computers in Simulation, 2000, 52: 289-310.
  • 5[5]Kantz H, Schreiber T. Nonlinear Time Series Analysis[M]. Cambridge University Press, 1997 (清华大学出版社,2000,影印本).
  • 6孙海云,曹庆杰.混沌时间序列建模及预测[J].系统工程理论与实践,2001,21(5):106-109. 被引量:21
  • 7[7]Kugiumtzis D, Ling O C, Christophersen N. Regularized local linear prediction of chaotic time series[J]. Physica D, 1998, 112:344-360.
  • 8沈辉,胡德文.基于正交最小二乘估计的非线性时间序列的预测[J].国防科技大学学报,2001,23(2):115-118. 被引量:5
  • 9[9]程云鹏.矩阵论(第2版)[M]. 西安: 西北工业大学出版社, 2002. 227-228.

二级参考文献7

  • 1[1]Kugiumtzis D. State Space Reconstruction Parameters in the Analysis of Chaotic Time Series-the Role of the Time Window Length[J]. Physica D. 1996, 95:13-28.
  • 2[2]Farmer J D, Sidorowich J J. Predicting Chaotic Time Series[J]. Phys. Rev. Lett. 1987, 59: 845-848.
  • 3[3]Kugiumtzis D, Lingjarde O C, Christophersen N. Regularized Local Linear Prediction of Chaotic Time Series[J]. Physica D. 1998, 112:344-360.
  • 4[4]Casdagli M. Nonlinear Prediction of Chaotic Time Series[J]. Physica D. 1989, 35:335-356.
  • 5[5]Navone H D,Ceccatto H A. Forecasting Chaos From Small Data Set: A Comparison of Different Nonlinear Algorithms[J]. J. Phys. A. 1995, 28(12):3381-3388.
  • 6[6]Lorenz E N. Deterministic Nonperiodic Flow[J]. J. Atmos. Sci. 1991, 20:579-616.
  • 7钟晓旭,曾庆虹,丘水生,韦克省.混沌吸引子中周期轨道的仿真研究[J].暨南大学学报(自然科学与医学版),1998,19(1):88-92. 被引量:3

共引文献24

同被引文献74

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部