期刊文献+

下线性与混合线性情况下的无限域上非线性p-Laplacian问题

Sublinear and Mixed Linear p-Laplacian Problems on Unbounded Domain
下载PDF
导出
摘要 研究了无限域上的非线性 p Laplacian问题 .利用变分极值理论证明了如果下线性以及混合线性情况满足一定条件则非线性 p Laplacian问题有正解 . The authors consider the p-Laplacian problem: f(x,u)=-div(a(x)u p-2u)+b(x)u p-2u,x∈Ω,u_ Ω=0, lim|x|→∞u=0, where 1<p<n,Ω(R n) is an exterior domain. Under certain conditions,the authors show the existence of solutions for the sublinear and mixed sub-superlinear problems via critical point theory.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第4期732-735,共4页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金 (10 1710 81)
关键词 椭圆问题 非线性p-Laplacian问题 正解 elliptic problem p-Laplacian problem positive solutions
  • 相关文献

参考文献9

  • 1[1]Bidaut-Veron M F. Local and global behavior of solutions of quasilinear equations of Emden-Fowler type[J]. Arch. Rational Mech. Anal, 1989, 107:57-77.
  • 2[2]Ni W M, Serrin J. Existence and nonexistence theorems for ground states of quasilinear partial differential equations[J].Accad. Naz. Lincel, 1986, 77:231-257.
  • 3喻宪生.上线性情况下的无限域上非线性p-Laplacian问题[J].西南师范大学学报(自然科学版),2004,29(2):177-181. 被引量:1
  • 4[4]Mazja V G. Sobolev spaces[M]. Berlin/New York:Springer-Verlag, 1985.
  • 5[5]Trudinger N S. On harnack type inequalities and their applications to quasilinear elliptic equations[J]. Comm. Pure Appl.Math, 1967, 20:721- 747.
  • 6[6]Serrin J. Local behavior of solutions of quasilinear equations[J]. Acta Math, 1964, 111:247 - 302.
  • 7[7]Kichenassamy S, Veron L. Singular solutions of the P-Laplace equation[J]. Math. Anal, 1985, 275:599- 615.
  • 8[8]Lieberman G M. Boundary regularity for solutions of degenerate elliptic equations[J]. Nonlinear Anal. T. M. A, 1988, 12:1203 - 1314.
  • 9金永阳,贾厚玉.一类椭圆方程解的连续性[J].应用数学,2002,15(2):52-56. 被引量:4

二级参考文献7

  • 1[3]Kurata K. Continuity and Harnacks inequality for solutions of elliptic portial differential Equation of second order [J]. Indiana U. Math J. , 1994,43:411~440.
  • 2[4]Littleman W,Stampacchia G, Weinberger H. Regualr points for elliptic equation with discontinuous coefficients[J]. Ann. Sc. Norm. Sup. Pisa. , 1963,17:45 ~79.
  • 3[5]Simader C. An elementary proof of Harnacks inequality for schrodinger operators and related topic[J].Math. Z. ,1990,203:129~152.
  • 4[1]Alvino. A,Lions. P. L,Trombetti. G, On optimization problems with prescribed rearrangements[J]. Nonlinear Anal. T. M. A. ,1989,13:185~220.
  • 5[2]Ferone V. Estimates and Regularity for solutions of elliptic equations in a limit cases[J]. Bollettino. U.M. I. ,1994,8(7)B:257~270.
  • 6金永阳,贾厚玉.一类椭圆方程解的连续性[J].应用数学,2002,15(2):52-56. 被引量:4
  • 7保继光,胡云娇.完全非线性椭圆方程的Liouville定理[J].北京师范大学学报(自然科学版),2002,38(3):313-315. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部