期刊文献+

基于电力系统日发电计划的混合智能messy遗传算法 被引量:3

HYBRID INTELLIGENT MESSY GENETIC ALGORITHM FOR DAILY GENERATION SCHEDULING IN POWER SYSTEMS
下载PDF
导出
摘要 机组组合是电力系统日发电计划中主要的优化任务,在满足各种约束条件下求得全局最优解是一个比较困难的问题。传统遗传算法的二进制编码和随机遗传操作不适合于求解大规模机组组合问题。针对电力系统日发电计划的特点,提出了一种混合智能messy遗传算法(HIMGA),该算法实现简单,大大减小了求解问题的规模,保证了群体的多样性,提高了算法的搜索效率,改善了算法的收敛性。仿真计算结果表明了该算法的有效性和实用性。 Unit commitment (UC) is the main optimization task in the daily generation scheduling in power systems. However, UC is also one of the most difficult optimization problems in a power system. It is unsatisfactory when used to solve the large scale UC problem with the conventional genetic algorithm, which uses binary coding and stochastic operators. A hybrid intelligent messy genetic algorithm (HIMGA) for daily generation scheduling is proposed, which can improve the diversity of evolution population and guarantee the convergence and rapidity. The effectiveness and practicality of the method proposed are shown by the simulation results.
出处 《电力系统自动化》 EI CSCD 北大核心 2004年第15期30-33,38,共5页 Automation of Electric Power Systems
关键词 混合智能messy遗传算法 日发电计划 机组组合 优化 hybrid intelligent messy genetic algorithm (HIMGA) daily generation scheduling unit commitment optimization
  • 相关文献

参考文献5

  • 1[2]Mashhadi H R, Shanechi H M, Lucas C. A New Genetic Algorithm with Lamarckian Individual Learning for Generation Scheduling. IEEE Trans on Power Systems, 2003, 18(3): 1181~1186
  • 2[3]Senjyu T, Yamashiro H, Uezato K, et al. A Unit Commitment Problem by Using Genetic Algorithm Based on Unit Characteristic Classification. In: Proceedings of Power Engineering Society Winter Meeting, Vol 1. New York: IEEE,2002. 58~63
  • 3[7]Richter C W Jr, Sheble G B. A Profit-based Unit Commitment GA for the Competitive Environment. IEEE Trans on Power Systems, 2000,15(2): 715~721
  • 4[8]Kumaran G, Mouly V S R K. Using Evolutionary Computation to Solve the Economic Load Dispatch Problem. Evolutionary Computation, 2001, 1(1): 296~301
  • 5[10]Senjyu T, Shimabukuro K , Uezato K, et al. A Fast Technique for Unit Commitment Problem by Extended Priority List. IEEE Trans on Power Systems, 2003, 18(2): 882~888

同被引文献17

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部