期刊文献+

基于小波包分解的电能质量扰动分类方法 被引量:68

CLASSIFICATION METHOD OF POWER QUALITY DISTURBANCE BASED ON WAVELET PACKET DECOMPOSITION
下载PDF
导出
摘要 随着敏感性设备的大量应用,电能质量问题已日益受到关注。对各种电能质量扰动进行分类是采取适当措施降低扰动带来影响的前提。小波包是在小波变换的基础上发展起来的,能够提供更为丰富的时频信息。文章分别选取小波包分解终节点的能量和熵作为特征矢量,应用Fisher线性分类器设计了分段线性分类器,对扰动分类进行了仿真识别。仿真结果表明,以熵为特征矢量的分类方法有较高的识别正确率。 Along with the wide application of sensitive equipments more and more attentions are paid to power quality. Classifying various disturbances to power quality is the premise of adopting appropriate measures to reduce the influences brought by disturbances. On the basis of wavelet transform the wavelet packet is developed, it can offer plentiful time-frequency information. Here, choosing the energy and entropy of terminal nodes through wavelet packet decomposition as feature vectors respectively and applying Fisher linear classifier, the piecewise linear classifier is designed and the simulation and analysis of disturbance classification are carried out. The simulation results show that the classification method, in which the entropy is used as feature vector, possesses higher classification correctness.
出处 《电网技术》 EI CSCD 北大核心 2004年第15期78-82,共5页 Power System Technology
关键词 电力系统 电网 仿真 小波包分解 电能质量 Computer simulation Entropy Frequencies Vectors Wavelet transforms
  • 相关文献

参考文献6

  • 1Gauda A M, Salama M M A, Sultan M R et al. Application of multiresolution signal decomposition for monitoring short-duration variation in distribution systems[J]. IEEE Transactions on Power Delivery, 2000, 15(2): 478-485.
  • 2Gauda A M, Kanoun S H, Salama M M A et al. Wavelet-based signal processing for disturbance classification and measurement[J]. IEE Proceedings- Generation, Transmission and Distribution, 2002,149(3):310-318.
  • 3Li G Y, Zhou M, Zhang Z Y. Power quatity disturbance automatic recognition based on wavelet and genetic network[C]. 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, Beijing, China, 2002: 1923-1926.
  • 4Ghosh A K, Lubkeman D L. The classification of power system disturbance waveforms using a neural network approach[J]. IEEETransactions on Power Deliverv, 1995, 10(1): 109-115.
  • 5Antonini G, Orlandi A. Wavelet packet-based EMI signal processing and source identification[J]. IEEE Transactions on Electromagnetic Compatibility, 2001, 43(2): 140-148.
  • 6YenG G, Lin K C. Wavelet packet feature extraction for vibration monitoring[J]. IEEE Trsnsactions on Industrial Electronics, 2000,47(3): 650-667.

同被引文献649

引证文献68

二级引证文献1063

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部