期刊文献+

一种带约束的多目标服务质量路由算法 被引量:13

A Constrained Quality of Service Routing Algorithm with Multiple Objectives
下载PDF
导出
摘要 多约束服务质量 (QoS)路由是要求在多个约束条件下计算满足所有独立限制条件的可行路径 将这种NPC问题转化为一种带约束条件的多目标优化问题 ,根据多目标遗传算法的智能优化原理 ,提出一种多目标QoS路由算法来产生一组最优非劣路由 理论分析和实验结果表明 ,使用带约束的多目标遗传算法是解决多约束QoS路由的有效途径 。 Providing quality of service (QoS) guarantees in packet networks gives rise to several challenging issues. One of them is how to determine a feasible path that satisfies a set of constraints while maintaining high utilization of network resources. Multi-constrained QoS routing finds a feasible route in the network that satisfies multiple independent constraints. In general, multi-constrained path selection is an NP-complete problem that cannot be exactly solved in polynomial time. This NP-complete problem is converted into a multiobjective optimization problem with constraints. The background of multi-constrained optimal path selection is introduced first. A multiobjective QoS routing algorithm is then proposed to produce a set of nondominated optimal route based on the intelligent optimization principle of multiobjective genetic algorithms. The theoretic analysis and experiment results show that the genetic algorithm with multiple criteria is effective for multi-constrained QoS routing, and can play an important role in the performance of networks.
作者 崔逊学 林闯
出处 《计算机研究与发展》 EI CSCD 北大核心 2004年第8期1368-1375,共8页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展规划基金项目 (G19990 3 2 70 7) 国家自然科学基金项目 ( 90 10 40 0 2 60 3 0 3 0 2 7) 南京大学计算机软件新技术国家重点实验室基金项目
关键词 多约束路径 服务质量路由 遗传算法 多目标优化 multi-constrained path quality-of-service routing genetic algorithm multiobjective optimization
  • 相关文献

参考文献15

  • 1S Chen, K Nahrstedt. An overview of quality-of-service routing for next-generation high-speed networks: Problems and solutions.IEEE Network, 1998, 12(6): 64~79
  • 2F Kuipers, P Van Mieghen, T Korkmaz, et al. An overview of constraint-based path selection algorithms for QoS routing. IEEE Communications Magazine, 2002, 40(12): 50~55
  • 3M R Garey, D S Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W H Freeman and Company, 1979
  • 4马振华.现代应用数学手册--运筹学与最优化理论卷.北京:清华大学出版社,1998(Ma Zhenhua. Modern Applying Mathermatics ManualOperational Research and Optimization Theory (in Chinese) .Beijng: Tsinghua University Press, 1998)
  • 5A Juttner, B Szviatovszki, I Mecs, et al. Lagrange relaxation based method for the QoS routing problem. INFOCOM 2001,Alaska, USA, 2001
  • 6邓志成,周旗,张凌云,徐惠民.QoS单播路由算法的研究[J].通信学报,2001,22(8):122-128. 被引量:9
  • 7Z Wang, J Crowcroft. Quality-of-service routing for supporting multimedia applications. IEEE Journal on Selected Areas in Communications, 1996, 14(7): 1228~1234
  • 8M I Henig. The shortest path problem with two objective functions. European Journal of Operational Research, 1985, 25(2): 281~291
  • 9P Van Meghem, H De Neve, F A Kuipers. Hop-by-hop quality of service routing. Computer Networks, 2001, 37(3-4): 407~423
  • 10崔逊学,方廷健.多目标进化算法的研究[J].中国科学基金,2002,16(1):17-19. 被引量:8

二级参考文献18

  • 1Coello C A C. List of reference on evolutionary multiobjective optimization. http://www lania. mx/ccoello/EMOO/EMOObib. html.
  • 2Hwang C L, Masud A S M. Multiple Objective Decision Making-methods and Application. Berlin: Springer verlag, 1979.
  • 3Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hillsdale. 1985,93-100.
  • 4http ://www. tik. ee. ethz. ch/emo/
  • 5Van Veldhuizen D A, Lamont G B. Multiobjective evolutionary algorithms: aAnalyzing the state-of-the-Art. IEEE Transactions on Evolutionary Computation. 2000, 8(2):125-147.
  • 6Hajela P, Lin C Y. Genetic search strategies in multi-chterion optional design. Structural Optimization, 1992,4:99-107.
  • 7Fonseca C M, Fleming P J. Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. In: Proceedings of the fifth international conference on genetic algorithms. 1993: 416-423.
  • 8Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE W orld Congress on Computational Computation, Piscataway, NJ. 1994, 1:82-87.
  • 9Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4) :257-271.
  • 10Deb K. Construction of test problems for multi-objective optimization.In: Banzhaf W et al Eds. GECCO-99, Proceedings of the Genetic and Evolutionary Computation Conference. San Francisco: Morgan Kaufmann, 1999,(1): 164-171.

共引文献15

同被引文献135

引证文献13

二级引证文献184

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部