期刊文献+

一种改善双射S盒密码特性的有效算法 被引量:10

An Effective Algorithm for Improving Cryptographic Properties of Bijective S-Boxes
下载PDF
导出
摘要 S盒是许多密码算法中的惟一非线性部件 ,它的密码强度决定了整个密码算法的安全强度 利用基因算法可以构造出密码特性良好的S盒 ,实践证明 ,若能在基因算法的中间过程对子S盒的密码特性作局部优化 ,将会使算法更加有效 WilliamMillan曾给出一个改善双射S盒的非线性度的算法 而差分均匀性也是衡量S盒密码特性的一个重要指标 ,研究了如何利用差分矩阵来改善差分均匀性 ,并给出了一个实用的算法 。 S-boxes are the only nonlinear component in many cryptographic algorithms, which decides the secutity strength of the whole algorithm. S-boxes with good cryptographic properties can be constructed by genetic algorithm, and it is proved in practice that optimizing cryptographic propertie of S-boxes in the middle procedure of algorithm can make the algorithm more effective. Difference uniformity is also an important aspect to weigh S-boxes. How to improve difference uniformity with difference matrix is considered. And a practical algorithm is given, which can improve nonlinearity and difference uniformity of a randomly chosen bijective S-box simultaneously.
出处 《计算机研究与发展》 EI CSCD 北大核心 2004年第8期1410-1414,共5页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目 ( 2 0 0 1AA14 10 10 2 0 0 2AA14 10 80 ) 国家"九七三"重点基础研究发展规划基金项目(G19990 3 5 80 2 ) 国家杰出青年科学基金项目 ( 60 0 2 5 2 0 5 )
关键词 S盒 基因算法 双射 非线性度 差分均匀性 S-Box, genetic algorithm, bijective, nonlinearity, difference uniformity
  • 相关文献

参考文献4

  • 1冯登国,吴文玲.分组密码的设计与分析.北京:清华大学出版社,2000.67-69(Feng Dengguo, Wu Wenling. Design and Analysis of Block Cipher (in Chinese). Beijing: Tsinghua University Press, 2000.67-69)
  • 2William Millan, L Burnett, G Carter, et al. Evolutionary heuristics for finding cryptographically strong S-boxes. In:ICICS'99, LNCS 1726. Berlin: Springer-Verlag, 1999. 263~274
  • 3William Millan, A Clark, E Dawson. Smart hill climbing finds better Boolean functions. Workshop on Selected Areas in Cryptology 1997, Ottawa, Canada, 1997
  • 4William Millan. How to improve the nonlinearity of bijective Sboxes. In: ACISP' 98, LNCS 1438. Berlin: Springer-Verlag,1998. 181~192

同被引文献83

引证文献10

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部